

Towards Global Cloud-Resolving Weather and Climate Prediction at Exascale

Philipp Neumann, Niklas Röber, Joachim Biercamp Deutsches Klimarechenzentrum (DKRZ)

> Luis Kornblueh, Matthias Brück Max Planck Institute for Meteorology

> > Daniel Klocke Deutscher Wetterdienst

Philipp Neumann (DKRZ)

Tornados, Disaster & Early Warnings

- Weather Extremes: Example Katrina
 → 1833 deaths, \$125 billion damage
 - \rightarrow accurate prediction via high resolution models
- Climate Change: Serious threat through by anthropogenic emissions (greenhouse gases)
 → quantitative estimates for change in
 - . climate extremes:

wind storms, flash floods, droughts, ...

ightarrow demand for high resolution modeling

to understand scientific keys such as cloud feedbacks and convective organization in climate^{1,2}

1 Bony et al. Nature Geoscience 8:261-268, 2015

2 Schneider et al. Nature Climate Change 7:3-5, 2017

Global High-Resolution Simulations

- Goal: 100-1000m horizontal resolution at global scale
- Less parametrization \rightarrow In the limit, we know the equations!
- Challenges: very compute/memory/data intensive

long-term efforts for model development

Overview

- 1. Hi-Res Simulations in ESiWACE & DYAMOND
- 2. Scalability and I/O
- 3. Performance Prediction via Sparse Grids
- 4. Summary

Centre of Excellence in Simulation of Weather and Climate in Europe (ESiWACE)

cmcc

Science & Technology

Facilities Council

simon Laplace

National Centre for

Atmospheric Science

Meet us!

ISC, 24-28 Jun, Frankfurt

WEATHER

CECMWF

Deutscher Wetterdienst

Met Office

etter und Klima aus einer Hand

- PASC, 2-4 Jul, Basel
- Ciênca, 2-4 Jul, Lisbon
- ICT, 4-6 Dec, Vienna

Governance & engagement WP1 WP2 Scalability Global high resolution model demonstrators \rightarrow ICON, IFS, **EC-Earth, NEMO Usability** WP3 **Exploitability** WP4 Management & dissemination WP5 **Coordinator:** DEUTSCHES KI IMARECHENZENTRU **CLIMATE** HPC Max-Planck-Institut SEAGATE BSC für Meteorologie ECERFACS allinea

ICHEC

DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND)

- Goal: Intercomparison of global high-resolution models
- Participation list:
 - ICON/ Luis Kornblueh
 - NICAM/ Ryosuke Shibuya, Chihiro Kodama
 - MPAS/ Falko Judt
 - FV3/ Shiann-Jiann Linn
 - SAM/ Marat Khairoutdinov
 - NASA GEOS5/ William Putman
 - UM/ Pier Luigi Vidale
- Data management and support through DKRZ/ESiWACE
- More information: <u>www.esiwace.eu/services/dyamond</u>

5km Global Simulation with ICON

- Icosahedral Non-hydrostatic (ICON) model
- Finite difference-based

- Triangular horizontal grid (21M cells), 137 vertical levels
- 45s time step

Scalability of ICON and IFS

I/O in Numbers: ICON-DYAMOND 5km

Nodes	No I/O procs	wrt_output (s)	
150	6	1091	
300	6	1332	
600	6	1661	
600	11	863	
900	15	749	

 \rightarrow How to determine optimal splitting?

Large Data Visualisation: Work in Progress @DKRZ

Perspectives

- 0.1-0.3 SYPD at 5km, atmosphere-only, O(30k Broadwell cores)
- Other groups:
 - FV3/GFDL: 0.4 SYPD at 6.5km, 55k cores (Cray XC40)
 - NICAM/Japan: 0.6 SYPD at 14km, 20k cores (K computer)
- Long-term goal:
 - 1km atmosphere-ocean simulations at 1 SYPD 3km ensemble atmosphere-ocean simulations
 - → this will require at least exascale computing and corresponding data capacity/handling capability
 - \rightarrow challenge: model=long-term development
- ESiWACE: The evolutionary path
 - \rightarrow optimise current (production) models
- ESCAPE/ESCAPE-2: The revolutionary path
 - DSLs to enhance programmability/portability
 - Mixed precision arithmetics
 - Increasing the levels of concurrency (dwarf concept)

Performance Prediction: Objective

- Multi-parameter influence on computational performance
 - → computational: OpenMP/MPI decomposition, loop-blocking, vector lengths, ...
 - → algorithmic: time step, number of iterations, error control/tolerance,...
 - → all aforementioned categories for every model subcomponent
 → high-dimensional parameter space
- Objective: performance estimate for Earth System Models...
 ...to gain insight into (wanted or unwanted) hotspots
 ...to improve scheduling (relevant to workflows?)
- <u>Approach</u>: Regression on high-dimensional parameter space via adaptive sparse grids

Sparse Grids

esiwace

Theorem 1 For the interpolation error of a function $f \in H^2_{0,mix}$ in the sparse grid space $V_{0,n}^s$ holds $||f - f_n^s||_2 = \mathcal{O}(h_n^2 \log(h_n^{-1})^{d-1})$. SG: $O(N(\log N)^{d-1})$ points

J. Garcke. Sparse grids in a nutshell

Full grid: $O(N^d)$ points

Performance Prediction: Sparse Grid Regression

- Configuration: ICON-DYAMOND R2B4 (160km global res.), no I/O
- Run times on single-node (dual-socket Broadwell)
- Parameters: number OpenMP threads/MPI tasks loop-blocking (nproma)
- Courtesy by Paula Harder, DKRZ

Summary

- ESiWACE Joining forces to explore computability of extreme-scale weather and climate simulations
- DYAMOND: A project to intercompare global high-resolution models

- 5km global resolution simulations incl. I/O at O(0.1-0.3) SYPD
- → long way to 1 SYPD, requiring co-design efforts far beyond the duck trio ☺
 → compute/data hardware, HPC, software engineering, weather, climate, mathematics, ...
- Performance predictions with sparse grids deliver accurate run time estimates in various applications (weather simulation, particle systems)

Contacts: neumann@dkrz.de, esiwace@dkrz.de, www.esiwace.eu

Acknowledgement:

ESiWACE has received funding from the **European Union's Horizon 2020 research and innovation programme** under grant agreement No 675191. The authors gratefully acknowledge the computing time granted by the **German Climate Computing Centre**.

Philipp Neumann (DKRZ)

BACKUP Top 10 Reasons...Why 1km Would Be A Great Leap

Bjorn Stevens. ExtremeEarth. Presentation @EGU 2018, Vienna:

- 1. Convection is resolved (rainbands).
- 2. Surface orographic effects and gravity waves are resolved (storm tracks).
- 3. Shallow circulations (clouds and convection, feedbacks and forcing).
- 4. Ocean eddies are resolved (southern ocean stratification).
- 5. Tropopause dynamics are resolved (storm tracks and stratospheric water vapor).
- 6. Bathymetric effects on water mass formation are resolved (variability).
- 7. Allows a native representation of land surface (land use changes).
- 8. Remaining problems, such as microphysics & turbulence become tractable (parameterization).
- 9. Simulates observables (brings different science communities to the same table).

10. Direct link to impacts (connects directly to application communities).

BACKUP I/O in Numbers: Grib vs Netcdf (ICON-

Dod holdes (Mistrial) compute 2), 15 IO procs,

1 simulated day, 2D/3D/rh,omega output every 15min/3h/15min

		grb	nc	ratio
filename	variables	(GB)	(GB)	nc/grb
atm1_2d_ml_20160801T000000Z	tqv_dia, tqc_dia, tqi_dia, tqg, tqs	5.7	38	6.7
	clct, lhfl_s, shfl_s, pres_sfc,			
atm2_2d_ml_20160801T000000Z	tot_prec, cape_ml	9.9	46	4.6
	asob_s, athb_s, asob_t, athb_t,			
atm_2d_avg_ml_20160801T000000Z	asou_t, asodifu_s, athd_s, athu_s	16	61	3.8
atm3_2d_ml_20160801T000000Z	u_10m, v_10m, t_2m, qv_2m, tqr	9.1	38	4.2
atm_3d_pres_ml_20160801T000000Z	pres	9.1	49	5.4
atm_3d_qv_ml_20160801T000000Z	qv	13	49	3.8
atm_3d_t_ml_20160801T000000Z	temp	13	49	3.8
atm_3d_tot_qc_dia_ml_20160801T000000Z	tot_qc_dia	1.4	49	35.0
atm_3d_tot_qi_dia_ml_20160801T000000Z	tot_qi_dia	0.96	49	51.0
atm_3d_u_ml_20160801T000000Z	u	14	49	3.5
atm_3d_v_ml_20160801T000000Z	v	14	49	3.5
atm_3d_w_ml_20160801T000000Z	w	12	49	4.1
atm4_2d_ml_20160801T000000Z	cin_ml, t_g, qv_s, umfl_s, vmfl_s	8	38	4.8
atm_omega_3d_pl_20160801T000000Z	omega	9	38	4.2
atm_rh_3d_pl_20160801T000000Z	rh	14	38	2.7