Performance Predictions for Storm-Resolving Simulations of the Climate System

Philipp Neumann, Joachim Biercamp, Niklas Röber
Deutsches Klimarechenzentrum (DKRZ)

Luis Kornblueh, Matthias Brück
Max-Planck-Institut für Meteorologie

Daniel Klocke
Deutscher Wetterdienst
Global High-Resolution Simulations

- High level of detail → 100-1000m horizontal resolution
- Less parametrisation → In the limit, we know the equations!
- Challenges: very compute/memory/data intensive!
Overview

1. ESiWACE: Overview and Goals
2. ESiWACE, DYAMOND and Perspectives
3. Scalability, IO, Visualisation
4. Performance Prediction
5. Summary
ESiWACE: Overview

- ESiWACE = Centre of Excellence in Simulation of Weather and Climate in Europe
- Funded by H2020, e-Infrastructures „Centres of Excellence for computing applications“
- ESiWACE leverages two European networks:
 - European Network for Earth System Modelling (ENES)
 - European Centre for Medium-Range Weather Forecasts (ECMWF)
ESiWACE substantially improves efficiency and productivity of numerical weather and climate simulation on high-performance computing platforms by supporting the end-to-end workflow of global Earth system modelling.
ESiWACE, DYAMOND and Perspectives

- **ESiWACE1**: Establishment of global high-resolution simulations to demonstrate the computability of weather/climate predictions with (at least)
 - 1km resolution (atmosphere only)
 - 10km resolution (atmosphere-ocean)
 - Codes: IFS, NEMO, ICON, EC-EARTH
 - Explicit representation of deep convection, convective clouds, small-scale ocean eddies
 - Decreasing errors and uncertainties in weather and climate prediction
- **DYAMOND**: Intercomparison of global high-resolution models
- **ESiWACE2**
- **Long-term**: Extreme-scale robust high-resolution ensemble simulations at 1 simulated year per day (SYPD)
Scalability of ICON: Global High-resolution Simulations

- **IFS TCo 1279 (9km, 137 levels, double precision)**
- **IFS TCo 1279 (9km, 137 levels, single precision)**
- **IFS TCo 1999 (5km, 137 levels, single precision)**
- **IFS TCo 3999 (2.5km, 62 levels, single precision)**
- **ICON R2B8 (10km, 137 levels, double precision)**
- **ICON R2B9 (5km, 137 levels, double precision)**
- **ICON R2B9 DYAMOND (5km, 90 levels, double precision)**
- **ICON R2B10 (2.5km, 62 levels, double precision)**

with async. IO:
- 164GB per sim. day
- 682GB checkpoint
I/O in Numbers: Outtakes from DYAMOND runs

<table>
<thead>
<tr>
<th>Nodes</th>
<th>No I/O procs</th>
<th>wrt_output (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>6</td>
<td>1091</td>
</tr>
<tr>
<td>300</td>
<td>6</td>
<td>1332</td>
</tr>
<tr>
<td>600</td>
<td>6</td>
<td>1661</td>
</tr>
<tr>
<td>600</td>
<td>11</td>
<td>863</td>
</tr>
<tr>
<td>900</td>
<td>15</td>
<td>749</td>
</tr>
</tbody>
</table>

→ How to determine optimal splitting?
I/O in Numbers: Grib vs Netcdf (DYAMOND 5km)

900 nodes (Mistral, compute2), 15 IO procs, 1 simulated day, 2D/3D/rh,omega output every 15min/3h/15min

<table>
<thead>
<tr>
<th>filename</th>
<th>variables</th>
<th>grb (GB)</th>
<th>nc (GB)</th>
<th>ratio nc/grb</th>
</tr>
</thead>
<tbody>
<tr>
<td>atm1_2d_ml_20160801T0000000Z</td>
<td>tqv_dia, tqc_dia, tqi_dia, tsg, tqs</td>
<td>5.7</td>
<td>38</td>
<td>6.7</td>
</tr>
<tr>
<td>atm2_2d_ml_20160801T0000000Z</td>
<td>clct, lhfl_s, shfl_s, pres_sfc, tot_prec, cape_ml</td>
<td>9.9</td>
<td>46</td>
<td>4.6</td>
</tr>
<tr>
<td>atm_2d_avg_ml_20160801T0000000Z</td>
<td>asob_s, athb_s, asob_t, athb_t, asou_t, asodifu_s, athd_s, athu_s</td>
<td>16</td>
<td>61</td>
<td>3.8</td>
</tr>
<tr>
<td>atm3_2d_ml_20160801T0000000Z</td>
<td>u_10m, v_10m, t_2m, qv_2m, tqr</td>
<td>9.1</td>
<td>38</td>
<td>4.2</td>
</tr>
<tr>
<td>atm_3d_pres_ml_20160801T0000000Z</td>
<td>pres</td>
<td>9.1</td>
<td>49</td>
<td>5.4</td>
</tr>
<tr>
<td>atm_3d_qv_ml_20160801T0000000Z</td>
<td>qv</td>
<td>13</td>
<td>49</td>
<td>3.8</td>
</tr>
<tr>
<td>atm_3d_t_ml_20160801T0000000Z</td>
<td>temp</td>
<td>13</td>
<td>49</td>
<td>3.8</td>
</tr>
<tr>
<td>atm_3d_tot_qc_dia_ml_20160801T0000000Z</td>
<td>tot_qc_dia</td>
<td>1.4</td>
<td>49</td>
<td>35.0</td>
</tr>
<tr>
<td>atm_3d_tot_qi_dia_ml_20160801T0000000Z</td>
<td>tot_qi_dia</td>
<td>0.96</td>
<td>49</td>
<td>51.0</td>
</tr>
<tr>
<td>atm_3d_u_ml_20160801T0000000Z</td>
<td>u</td>
<td>14</td>
<td>49</td>
<td>3.5</td>
</tr>
<tr>
<td>atm_3d_v_ml_20160801T0000000Z</td>
<td>v</td>
<td>14</td>
<td>49</td>
<td>3.5</td>
</tr>
<tr>
<td>atm_3d_w_ml_20160801T0000000Z</td>
<td>w</td>
<td>12</td>
<td>49</td>
<td>4.1</td>
</tr>
<tr>
<td>atm4_2d_ml_20160801T0000000Z</td>
<td>cin_ml, t_g, qv_s, umfl_s, vmfl_s</td>
<td>8</td>
<td>38</td>
<td>4.8</td>
</tr>
<tr>
<td>atm_omega_3d_pl_20160801T0000000Z</td>
<td>omega</td>
<td>9</td>
<td>38</td>
<td>4.2</td>
</tr>
<tr>
<td>atm_rh_3d_pl_20160801T0000000Z</td>
<td>rh</td>
<td>14</td>
<td>38</td>
<td>2.7</td>
</tr>
</tbody>
</table>
The Purpose of Simulation is Insight...

See, understand, learn, communicate ...

- Confirmatory visualisation
- Interactive visualisation
- Animations & stills for communication
Large Data Visualisation

in-situ Visualisation
(ParaView/Catalyst/Cinema)

Simulation
Adaptor
ParaView/Catalyst
Results

in-situ Compression
(Vapor)

Simulation
Decomposition
Vapor
Results

HPC System
Workstation
Towards Performance Prediction using Sparse Grids

- **Objective:** performance estimate for complex ESMs...
 - ...to gain insight into (wanted or unwanted) hotspots
 - ...to improve scheduling (relevant to workflows?)
- **Multi-parameter influence on computational performance**
 - → OpenMP/MPI decomposition, loop-blocking, vector lengths, ...
- **Approach:** *Regression on (potentially) high-dimensional parameter space via adaptive sparse grids*
Towards Performance Prediction using Sparse Grids

- Configuration: ICON R2B4 DYAMOND (160km global res.), no I/O
- Run times on single-node (dual-socket Broadwell)
- Parameters: number OpenMP threads/MPI tasks loop-blocking (nproma)
- Thanks to Paula Harder, DKRZ
ESiWACE – Joining forces to explore computability of extreme-scale weather and climate simulations

- ENES HPC Workshop, May 17-18 2018, Lecce/Italy
- Teratec Forum, June 19-20 2018, Palaiseau/France
- ISC, June 24-28 2018, Frankfurt/Germany
- PASC, July 2-4 2018, Basel/Switzerland

5km global resolution simulations incl. IO at O(45) forecast days/day → still some way to 1 SYPD...

Performance prediction with sparse grids delivers accurate run time estimates in various applications

Contacts: neumann@dkrz.de, www.esiwace.eu

Acknowledgement:
ESiWACE has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 675191. The authors gratefully acknowledge the computing time granted by the German Climate Computing Centre.