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Visual Study of the Benguela Upwelling System using 
Pathline Predicates



How accurate are Lagrangian techniques?

• Simulation calculated with 20 min steps
• Stored time intervals 5 day means
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Evaluate the accuracy of pathline predicates for flow
visualization

• Pathline Error 
Estimation

• Trajectory Based
Tracer Field

− Variations: number of
particles

− Variations: data
resolution
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Coastal upwelling systems transport nutrient-rich water to the upper layer of the ocean. These regions are especially
important for marine life and fishery. We are using pathline predicates to create visualizations of the spatio-temporal
structure of the Benguela upwelling system. Based on a 3D flow field of a regional ocean model, we first derive space-
filling trajectories covering the full model grid. With pathline predicates, we select trajectories related to upwelling. Next,
we derive a 3D scalar field representing the pathline density, which is visualized using volume rendering techniques.
Further analyses of the pathlines show a distinct annual cycle in the upwelling activity, which fits well to observation-
based analyses found in literature. These techniques and their application are described in [1].

In this work, we focus on evaluating the accuracy of our techniques. Based on the 3D ocean flow field stored at relatively
coarse time interval, we compute trajectories to emulate a retrospectively derived tracer field. For different source
regions, our data set contains several synthetic tracer fields directly computed within the ocean model simulation using
the original short time steps that we can compare with our trajectory-based tracer field. With our evaluation we aim at
determining minimum requirements for the temporal resolution of flow data for retroactively applying particle pathline
techniques or visual analyses. By analyzing the skill in reproducing a synthetic model tracer field, we can set up rules for
using the particle pathline methods in general.
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2.2

• Wind stress at the sea surface cause transport 
of cool water from greater to shallower depths.

• Regions with cool nutrient-rich water, which 
"disproportionally contribute to the global 
primary production and host many of the major 
commercially used fish stocks" [1]

• High importance to marine life and fishery
→ focus of ongoing scientific observation 
campaigns and modeling activities. 

[1]  MOHRHOLZ V., EGGERT A., JUNKER T., NAUSCH G.,OHDE T., SCHMIDT M.: Cross shelf hydrographic and hydrochemical conditions and their short term variability at the northern 
benguela during a normal upwelling season. Journal of Marine Systems 140, Part B (2014), 92 – 110.
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2.32.1

(Click on image for extension)

• Using the Benguela system as an example 
(see simulation domain in image)

• Simulation based on the modular ocean model 
MOM version 5 [1,2,3]. 

• Domain: rectilinear grid of the size 261 x 351 x 62. 

• Simulation data include: 
1. time-dependent flow fields (ocean current data)
2. passive tracer fields 

[1] GRIFFIES S. M., GNANADESIKAN A., DIXON K. W.,DUNNE J. P., GERDES R., HARRISON M. J., ROSATI A., RUSSELL J. L., SAMUELS B. L., SPELMAN M. J., 
WINTON M., ZHANG R.: Formulation of an ocean model for global climate simulations. Ocean Science 1, 1 (2005), 45–79.
[2] HERZFELD M., SCHMIDT M., GRIFFIES S., LIANG Z.: Realistic test cases for limited area ocean modelling. Ocean Modelling 37, 1-2 (2011), 1–34.
[3] SCHMIDT M., EGGERT A.: Oxygen cycling in the northern benguela upwelling system: Modelling oxygen sources and sinks.
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(Click on image for shrinkage)
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2.42.2

UPR

(Click on an image for a close-up)

Specific FiltersLPD

1. Compute a space and time filling set of trajectories for the entire model domain.

2. Use „upwelling-predicates“ to select trajectories related to upwelling. 

3. Use the information of upwelling-trajectories for:
• Determine a upwelling time for each upwelling-trajectories
• Numeric analysis of upwelling depth or streng
• Visual analysis „Local Pathline Density (LPD)“
• Visual analysis „Upwelling Particle Ratio (UPR)“
• Additional specific filters

2.1 Upwelling Effect 2.2 Simulation Data 2.3 Analysis 2.4 Problem
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Local Pathline Density (LPD)
• Describes density of upwelling-trajectories in 

proportion to the cell diagonal.

• Coloring cell depending on LPD value. 

• Figure (top): example of LPD visualization for strong 
and weak upwelling current. Coloring:

 blue = before the upwelling
 yellow-red = after the upwelling time.

• Identification of a distinct annual cycle in the upwelling 
activity

• Figure (bottom): numeric analysis of the number of 
upwelling trajectories.
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Upwelling Particle Ratio (UPR)

• Describes for each cell the proportion of upwelling 
particles to non-upwelling particles.

• Video (top): visualization of the UPR values before 
the upwelling time.
(high extension of the z-axis)

• Identification of a distinct annual cycle in the 
upwelling source depth

• Figure (bottom): numeric analysis of the domain-
enter-depth of upwelling trajectories coming from 
the west side.






2. Introduction1. Start 3. Method 4. Results

Back

• Classify the upwelling trajectories by 
defined characteristics. 

• using "predicates" in order to identify 
upwelling trajectories fulfilling user-defined 
requirements.

• Example Figure shows: 
 filtration of upwelling event between 

15°S and 27°S. 
 additional classification into different 

source

Specific Filters
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2.3

Problem: 
• Stored time intervals are much larger than the model time step 

• For our analysis: Simulation calculated with 20 minutes steps stored as 5-day mean 
data set (Δt = 5d ). 

• Question: how accurate Lagrangian techniques applied in a postprocessing step can 
be in spite of relatively coarse temporal sampling of flow field data.

2.1 Upwelling Effect 2.2 Simulation Data 2.3 Analysis 2.4 Problem

This work:

• Focus on evaluating the accuracy of our techniques by using data with different 
temporal samplings for:

1. Compare pathlines with those derived for the fine data set with Δt = 3h .
2. Compare emulated synthetic tracer fields (based on pathlines) with synthetic 

tracers computed within the ocean model simulation using Δt = 20m
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3.2

(Click on image for extension)

• Using Δt = 3h data to derive data sets with
Δt = 6h, 12h, 1d, 2d, 3d, 5d for comparison. The 
figure illustrates the scheme used for
undersampling.

• For each data set with Δt = 3h, 6h, 12h, 1d, 2d, 
3d, and 5d, we calculate a trajectory set with a 
minimum of n particles inside each cell with
n={1,4,16}. (click for more information)

3.1 Data Emulation 3.2 Pathline Error Estimation 3.3 Trajectory Based Tracer Field
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1. Initialization by seeding n particles at time t = 0 in 
each of the model’s grid cells. 

2. Integration of the pathlines (Runge-Kutta 4th-
order scheme (RK), Euler). 

3. Check at each time step the number of particles 
in each cell. Seed new particles if necessary. 

4. Perform a backward integration for the new 
particles to use the information of previous time 
steps (until the very first timestep or until they 
leave the domain).

Method to create the trajectory set

3.1 Data Emulation 3.2 Pathline Error Estimation 3.3 Trajectory Based Tracer Field

Example with two time steps and n=4
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(Click on image for shrinkage)

3.1 Data Emulation 3.2 Pathline Error Estimation 3.3 Trajectory Based Tracer Field
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3.33.1

• All initial particles calculated with the data sets with Δt = 3h, 6h, 12h, 1d, 2d, 
3d, and 5d have the same start position and the same starting time. 

• Idea: compare pathlines of initial particles and use the best available 
temporal resolution Δt = 3h with a standard RK integration as reference.

• As values for comparison we are using:

 mean absolute distance (MAD)

 mean squared distance (MSD)

 mean line difference (MLD)

3.1 Data Emulation 3.2 Pathline Error Estimation 3.3 Trajectory Based Tracer Field
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3.2

3.1 Data Emulation 3.2 Pathline Error Estimation 3.3 Trajectory Based Tracer Field

The following steps explain how we 
created our simulated tracer field for the 
comparison with the original tracer.

1. Check each trajectory for intersection 
points with a defined tracer source area 
and mark them.

2. Determine all particles for each cell and 
point in time.

3. Calculate tracer concentration ratio as 
simulated tracer value.
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(Click on image for a close-up)

MAD-Plot

• All three values show nearly the same result (MAD 
example in left figure). 

• The graphs show that the error grows with time. 

• As expected, the lowest MAD is achieved by using the 
RK integration using the Δt = 6h data. 

• BUT: Even with the Δt = 6h data, the average error after 
one year is around 40 kilometers
(equivalent to a deviation of about four cells)

4.1 Pathline Error Estimation 4.2 Trajectory Based Tracer Field

4.2

Any storage intervals larger than the model time 
step lead to an error. The larger the difference, 
the larger the error.
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(Click on images for close-up)

Storage Step Size Analysis Number of Particles Analysis

Pattern Analysis:

• Figure (left): good agreement of the shape
of the emulated tracer cloud with that of the
original tracer, even with the coarse data set
with Δt = 5d.

4.1 Pathline Error Estimation 4.2 Trajectory Based Tracer Field

4.1 Despite the unsatisfying results of the 
Pathline Error Estimation, the shape of
the emulated synthetic tracer pattern
matches reasonably well.

Magnitude Analysis:

• Figure (left): For all temporal samplings our
method overestimates the tracer
concentration. 

• Figure (right): Even with a larger number of
particles we could not improve the results

Further analysis and improvment of
our method is nessecary
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