

Disks, Tapes, and Climate Data

A Cost Perspective

59th HPC User Forum, Munich, Germany

Prof. Dr. Thomas Ludwig German Climate Computing Center (DKRZ) University of Hamburg, Department for Computer Science (UHH/FBI)

© Thomas Ludwig

Overview

- 28 Years of DKRZ Systems
- Data Life Cycle Services
- Coupled Model Intercomparison Project (CMIP)
- Procurement Considerations
- Cost Reductions
- Exapolations

25 Years of DKRZ (1987-2012)

First computer in 1987

- Control Data Cyber-205
 - 1 processor, 200 MFLOPS,
 32 MB main memory
 - 2.5 GB hard drive, 100 GB tape library

"Blizzard" system 2009-2015

- IBM Power6
 - 8,500 processor cores, 158 TFLOPS, 20 TB main memory
 - 6 PB hard drives, 100 PB tape library

factor 1,000,000 in all components

115 TFLOPS Linpack, 20 TByte main memory produces an estimated data transfer mem↔disk

- 5-10 GB/s (430-860 TB/day)
 - 20-40 times the complete main memory
- ca. 100 TB/day are saved on disk for further inspection
- ca. 20 TB/day are archived to tape

July 1st: "Mistral" put into Operation

FatTree with FDR-14 Infiniband 3 Mellanox SX6536 core 648-port switches

From "Blizzard" to "Mistral"

Measure	2009	2015	Factor
Performance (no accelerators)	150 TFLOPS	3 PFLOPS	20x
Nodes	264	3,000	12x
Main memory	20 TB	200+ TB	10x
Hard disk capacity	6 PB	50 PB	9x
Throughput memory to disk	30 GB/s	400 GB/s	13x
Tape library capacity (2015, 2020)	120 PB	390 PB	3x
Throughput disk to tape	10 GB/s	20 GB/s	2x
Power consumption	1.6 MW	1.4 MW	0.9x
Investment costs	€ 30M	€ 35M	1.2x

DKRZ Service Structure

Basic workflows:

Climate Model Development

Climate Model Data Production

CMIP

CMIP5 – Coupled Model Intercomparison Project

- Provides key input for the IPCC report (5th AR, 2013)
 - Intergovernmental Panel on Climate Change
- ~20 modeling centers around the world (DKRZ being one of the biggest)
- Produces 10s of PBytes of output data from ~60 experiments ("digital born data")

Data are produced without knowing all applications beforehand and these data are stored and archived for interdisciplinary utilization by yet unknown researchers

CMIP5 Summary

- Status CMIP5 data archive (June 2013)
 - 1.8 PB for 59,000 data sets stored in 4.3 Mio Files in 23 ESGF data nodes
 - CMIP5 data is about 50 times CMIP3
- Costs of CMIP5 at DKRZ
 - 20 M corehours in 2010/2011 = 1/3 annual capacity with IBM
 - Share of investments costs: € 1.6M
 - Share of electricity costs: € 0.6M
 - Share of tape costs: € 0.1M
 - Additional service staff: € 1.0 M

CMIP6 Data Volume Estimate

- Extrapolation to CMIP6 (2017-2019)
 - CMIP6 has a more complex experiment structure than CMIP5.
 - Expectations: more models, finer spatial resolution and larger ensembles
 - Factor of 20: 36 PB in 86 Mio Files
 - Potential DKRZ share: 3 PB on disk, 20 PB on tape
 - Factor of 50: 90 PB in 215 Mio Files
 - More accurate numbers in October 2015

Planning Issues

- Procurement issues
 - How to distribute invest money onto compute and I/O?
- Operational issues
 - How much energy consumption?
 - How much tape consumption?

Technology Gap between Compute and I/O (>2 decades)

Investment into Compute and I/O (fall 2012 for Mistral)

UH <u>H</u> Universität Hamburg

> DKRZ

Investment and Energy Costs for I/O

Measure	2009	2015	Factor
Performance	150 TFLOPS	3 PFLOPS	20x
Hard disk capacity	6 PB	50 PB	9x
Relative energy consumption of I/O	10%	20-25%	>2x
Relative investment costs for I/O	x%	у%	<2x?

From "Mistral" to "dkrz2020" (planning starts 2016)

Measure	2015	2020	Factor
Performance (no accelerators?)	3 PFLOPS	60 PFLOPS	20x
Main memory	200+ TB	2 PB	10x
Hard disk capacity	50 PB	500 PB	10x
Throughput memory to disk	400 GB/s	5 TB/s	13x
Tape library capacity (2020, 2025)	390 PB	1 EB	3x
Throughput disk to tape	20 GB/s	40 GB/s	2x
Power consumption	1.4 MW	1.4 MW	1x
Investment costs	€35M	€ 40M	1.15x

Cost Reductions

Dominating factors

- Energy consumption of disks
- Costs for tapes for mid and long term archival

Analysis

See paper and slides

"Exascale Storage Systems – An Analytical Study of Expenses"

In: Supercomputer Frontiers and Innovations, Vol. 1, Nr. 1, 2014 http://superfri.org/superfri/article/view/20

Data Reduction Techniques

We compare

- Re-computation
 - Only for a very low number of accesses
- Deduplication
 - Not promising but can identify inefficient use of storage
- Compression (client and server side)
 - Can help to significantly reduce TCO
- User education
 - Most promising most difficult

Extrapolations

- DKRZ´s role in the world
- DKRZ´s plan for Exascale

DKRZ in the TOP500 List

From "dkrz2020" to "dkrz-exa"

Measure	2020	2025	Factor
Performance (with accelerators?)	60 PFLOPS	1.2 EFLOPS	20x
Main memory	2 PB	20 PB	10x
Hard disk capacity	500 PB	5 EB	10x
Throughput memory to disk	5 TB/s	65 TB/s	13x
Tape library capacity (2025, 2030)	1 EB	3 EB	3x
Throughput disk to tape	40 GB/s	80 GB/s	2x
Power consumption	1.4 MW	1.4 MW	1x
Investment costs	€ 40M	€ 48M	1.2x

Status October 2015

New brochure at www.dkrz.de about us media center publications

© Thomas Ludwig