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Introduction / Motivation

o Scalability of ECHAMG at low resolution suffers from the limited number of gridpoints.

* Potential of current HPC architectures, therefore, cannot be used at full scale.

 Moore’s law Is at its end and CPU clocks will not increase considerably any longer.

* Future technologies will offer even higher concurrency as more CPU cores.

« Component concurrency promises to create more parallelism in the earth system models.

simulations.

* Independent columnwise-computations in radiation allows for a more flexible and finer data decomposition.
o Extracted radiation code from atmosphere realizes separation of concerns and allows for independent optimization.

J .

PAL
MOD | 7inve

Fu
EX

of Education

GERMAN
CLIMATE %
and Research

ly asynchronous communications scheme
nloiting potential different data decomposition In

rac

lation

Expected Performance Gain :
 Radiation component is one of the most expensive computational parts in ECHAMG6, at least for paleo climate .

1.98x for T31
1.35x for T63

Verification :

Scientific evaluation of time stepping scheme

Federal Ministry

\

Next Steps :
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/In-situ Sequential Radiation Timeline (Already Implemented in ECHAMB) \
A °* Atmosphere and Radiation run in the same MPI tasks.
n MPI « Although Radiation scales better, it is forced to use the same domain
Processes decomposition as Atmosphere.
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/Synchronous Remote Radiation Timeline (Our implementation) )

« Atmosphere and Radiation run in separate MPI tasks.

« Atmosphere waits for Radiation to finish, however.

 Separation of Concerns (Radiation Code Separated from Atmosphere)
 Bit-identical Results (due to Blocking Communications)

« Communications Overhead Compared to Radiation Cost < 1%
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Asynchronous Remote Radiation Timeline (Our Future Plan)
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Atmosphere and Radiation run in separate MPI tasks.

Atmosphere does not wait for Radiation any longer.

Different domain-decomposition in Radiation should bring a higher speedup.
Radiation sends results immediately.

Atmosphere should choose to receive results in the best time step.

If (idle time + communication overhead = 0), Speedup=1.98x at T31

No longer Bit-identical Results (due to non-Blocking Communications)
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