

DKRZ – project 0783 - AEROTROP

Reactive Nitrogen in a CGCM: Impact of model uncertainties on trace gas mixing ratios and aviation NO_x effects

K. Gottschaldt and C. Voigt

Abstract

Reactive nitrogen (NO_y) species are involved in the chemical processes affecting the atmospheric mixing ratios of the greenhouse gases ozone and methane. Here we investigate three uncertainties related to the representation of NO_y in the EMAC-CGCM:

- Impact of the reaction $HO_2 + NO \rightarrow HNO_3$ on atmospheric oxidizing capacity and methane lifetime. The reaction is not included in standard chemical mechanisms yet.
- Global sensitivity of aviation NO_x effects to the above reaction
- Impact of different parameterizations for HNO₃ scavenging by cirrus ice particles on the NO_y budget in the tropopause region

Comparisons to observations

Simulated mixing trace gas ratios are compared to observations in an attempt to check if the results are reasonable for all model modifications. None of the simulations described here could be ruled out according to our tests.

Effects on background chemistry

Including $HO_2 + NO \rightarrow HNO_3$ in the chemical mechanism decreases $[NO_x]$, $[NO_y]$ and $[O_3]$ in the tropopause region. The total ozone column decreases by about 2%. Lower OH mixing ratios throughout the atmosphere increase methane lifetime (for oxidation CH_4+OH) by about 50%. The uncertainties associated with the HNO_3 -forming channel thus propagate considerable additional uncertainties on methane lifetime estimates, on predictions of future methane abundances, on estimates of lifetime changes due to anthropogenic emissions, and on the corresponding RF.

(km) 12 (km)

-25

60S 30S 0 30N 60N

Global sensitivity of aviation NOx effects to $HO_2 + NO \rightarrow HNO_3$

Warming and cooling effects of aircraft NO_x emissions are both enhanced when considering the HNO_3 -forming channel, but the sum is shifted towards negative radiative forcing. Uncertainties associated with the inclusion of the $HO_2 + NO \rightarrow$ HNO_3 reaction and with its corresponding rate coefficient propagate a considerable additional uncertainty on estimates of the climate impact of aviation and on NO_x -related mitigation strategies.

Examples for the climatological comparison of modelled (EMAC1, grey background) versus observed (/3/, black bars) profiles of $[NO_x]$. Mean, median, standard deviation, min and max are shown for matching regions and time of year.

HO_x-NO_x chemistry is Currently being evaluated. Annual zonal mean HNO₃ mixing ratios: Relative deviation between a simulation without uptake on ice (nLA) and a simulation with Langmuir uptake.

for HNO₃ ice uptake on

emissions of the year 2000. The planet might be warmer without aviation NO_x .

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Institut für Physik der Atmosphäre

http://www.dlr.de/ipa