Precipitation controls in the tropics

Max Planck Institute for Meteorology, Hamburg, Germany The Atmosphere in the Earth System, HErZ group

Some basic precipitation biases over the tropics

Fig. 1: Simulated and observed land to ocean ratio of tropical precipitation.

CMIP5 models as well as TRMM and GPCP observations

- Long-standing precipitation biases over the tropics
- Common to many climate models
- Limit our confidence in climate simulations.

Fig. 2: Monthly mean diurnal cycle of tropical precipitation averaged over (a) ocean and (b) land.

Goals

- What controls the precipitation distribution over the tropics?
- How do parameterization choices control the precipitation distribution?

Strategy

- Climate simulations with ECHAM and MPI-ESM
- Sensitivity studies, especially by perturbing the convection scheme.

Example: controls on and impacts of the diurnal cycle of deep convection

Questions

- Can we control the convective diurnal cycle by controlling the convective entrainment rate?
- How sensitive is the tropical climate to the convective diurnal cycle?

Method

- ECHAM (T63L47) with fixed SST
- Changing turbulent entrainment ε_{turb} and detrainment δ_{turb} rates for deep convection (Fig. 3)

1.0 a) Ocean 0.8 P220 P020 P060 P100 P140 A20 A050 0.6 P100 P144 A21 A051 P181 A22 A050 D.4 A050 D.4

Fig. 3: Imposed diurnal cycle in ϵ_{turb} over (a) oceanic and (b) land points. Only the ocean values are modified in (a). Similar is true for the land experiments in (b). δ_{turb} equals ϵ_{turb} .

Results I

- Over ocean the convective diurnal cycle can be controlled by entrainment (Fig. 4a)
- Over land the convective diurnal cycle cannot be fully controlled (Fig. 4b)
- The distinct nature of convection triggering over land and ocean explains the latter differences.

a) Ocean P180 P180 P220 P020 P020 P020 P030 P140 A20 A20 A20 OBS P140 A20 A20 A050 OBS P140 A20 A050 OBS P140 A20 A050 OBS

Fig. 4: Monthly mean diurnal cycle of precipitation averaged over tropical (a) ocean for the oceanic experiments and (b) land for the land experiments.

Results II

 Impact of different convective diurnal cycles on overall precipitation small (Fig. 5)

Fig. 5: Taylor diagram of mean tropical precipitation averaged for the various experiments.

C. Hohenegger and B. Stevens, 2013: Controls on and impacts of the diurnal cycle of deep convection. J. Adv. Model. Earth Systems, submitted.

