Impact of temperature dependent remineralisation in a warming ocean on the global carbon cycle (CARBOCHANGE – BMBF Project 670)

J. Segschneider^{1,2}, J. Bendtsen²

¹ Max Planck Institute for Meteorology, Hamburg ² Centre for Ice and Climate, Copenhagen

Motivation

The biological pump exports carbon from the atmosphere to the subsurface ocean (see right) How will this change in a warming ocean?

- Observations demonstrate temperature dependency of remineralization of organic matter (Bendtsen et al., submítted) $Q_{10} \approx 2.5$
- \rightarrow ríse in temperature (due to climate change) will increase remineralisation rate
- but: Increased remineralisation will increase near surface nutrient levels with a potential for a negative feedback by increased production

- what is the net effect of increased remineralization on the carbon budget and air-sea exchange?

time [h]

Changein

Water samples were taken at locations indicated by bullets (POC) and triangles (DOC) around the world (see map). Incubation experiments were performed at local in-situ temperature and +/- 5 °C. Oxygen consumption was measured as indicator of remineralization and a fit was made in order to determine Q₁₀ rates (lines).

Projected temperature changes (CMIP5) and experiment setup

Experiment set-up

Basís: CMIP5 píControl (MPI-ESM-LR) identical experiment set up but: Temperature perturbation field from RCP85 2090-2100 used for remineralization only (!) with a Q_{10} of 2 (POC and DOC) Integrated for 100 years Differences with identical years from píControl

Temperature difference [°C]

Impact on biogeochemistry

Change in global inventories by year 100	[Pg C]	Accumulated change in ocean boundary fluxes by year 100	[Pg C]
TCO ₂	-27.95	Air-sea CO ₂ exchange	18.66
Detritus	-0.06	Sedimentation of CaCO ₃	10.22
CaCO ₃	0.05	Sedimentation of organic carbon	-0.87
Phytoplankton	0.02		
Zooplankton	0.03		
Dissolved organic carbon	0.27		
Total	-27.63		28,01

- Temperature dependent remineralisation has an impact on carbon budget
- Increase of pCO_2 mainly in regions of high biological production

- Decrease in oligotrophic regions
- Net loss almost 0.3 GtC/a
- Calcite export plays significant role
- Role of alkalinity needs to be further investigated - Going from sensitivity exp. to absolute T-dependent

remineralisation requires tuning/new spinup

This work has been supported through EU FP7 project CARBOCHANGE "Changes in carbon uptake and emissions by oceans in a changing climate" which received funding from the European Comission's Seventh Framework Programme under grant agreement no. 264879) and the Centre for Ice and Climate, University of Copenhagen.

gC m-2 yr-1

Computations were carried out at DKRZ, Hamburg under BMBF project 670.

