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Motivation Model description

Craig and Cohen (2006) used the Gibbs canonical ensemble from statistical mechanics to derive [ |simulations are performed with the anelastic, non-
equilibrium statistics of a field of cumulus clouds under homogeneous large-scale forcing. hydrostatic model EULAG (EUlerian/semi-LAGrangian fluid

solver), which uses

a second order accurate, semi-implicit,

They derlved_ the p_roIaablllty d_enS|ty _functlon of _|nd|V|duaI cloud ) non-oscillatory forward in time approach (Prusa et al.,
mass fluxes, in the limit of non-interacting convective cells, to be | p(m)dm = ——e ™™ dm 2008)
exponential: (m) |

1 The underlying transport operator to solve the moist

Mean cloud number density distribution: Validation of their theory with CRM simulations at 2

- Increasing the forcing mainly increases the

(V) : Ensemble mean number of clouds
number of clouds, not cloud strength

governing equations Is formulated for arbitrary curve-linear
frameworks and employs the MPDATA (multidimensional

(V) km horizontal resolution In radiative convective positive, definite advection transport) algorithm.
dn(m) = ~—~e~™™dm equilibrium fo_r dn‘f_ere_nt fo_rcm:qs : The buoyancy term is expressed
(m) ﬁ — exponential distribution is independent by the perturbation of the "= 0+0(e qy— ¢ — q)
of the forcing density potential temperature: ' '

(Mixing ratio of water vapor (q ), cloud water (g_) and rain water (qp))

(m) : Ensemble mean mass flux per cloud

d / 0
n —V(I;>+gﬁ—f><u"-l—M’

Is this theory of an exponential mean cloud number density distribution dt D
still valid at very high horizontal resolutions (~100 m), where smali 70
cumulus clouds are actually resolved? E = —u Vb, + F
Control simulation: set-up Evolution to quasi-equilibrium

- 3D model domain: 128 km *128 km * 20 km
- 2 km horizontal, 200 m vertical resolution
- Sea Surface Temperature fixed at ©_ . = 300 K

- Periodic boundary conditions in x and y
- Rayleigh damping layer at top of the domain
- Horizontally homogeneous radiative cooling rate F__

Maximum vertical velocity

The model IS run

- high frequency

with F_= - 8 K/day from an initial

horizontally homogeneous state with no convection:

variability (~1 h) can be directly

related to convective activity

d of the overall spin-up towards

e Input of energy Into the system

(surface fluxes) provides exactly the energy required

4 ! N
F
— long, slow tren
radiative convective equilibrium (~30 days)
200 hPa - | | | |
@ @ \ In equilibrium, th
400 hPa | g
- by convection to offset F_ .
AF. Focd F_, 2 rad
.
SST =300 K X 0
Moist Static Energy = ¢_*T + g*z + L *q

Bulk parametrization of surface fluxes of latent and
sensible heat (Grabowski, 1998),

where U Is a measure of the
surface wind taking into account
the convective velocity scale.

Ffb — Id(J (q)s-rf - (I)zz[])

Exponential distribution of mass

- 8 K/day radiative cooling - 4 K/day radiative cooling

The equilibrium state

Horizontal Slice through the domain at z = 1.8 km
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Results of the simulations with
EULAG at 2 km horizontal
resolution for different forcings:

1) Mean cloud number density
distribution IS exponential,
iIndependent of the forcing.

2) Increasing the forcing by some
factor increases the mean number
of clouds In the domain by a
similar factor.

x—axis |[km]

Outlook

1) Criterion to define cloudy grid points: Repeat simulations for different cooling rates while step-wise
Increasing the horizontal resolution.

w>1m/s and q_>1.e-3 g/kg

2) Search for adjacent cloudy grid points Answer questions:

3) Compute mass flux per cloud: |m =p*c*<w> resolving resolutions?
2) Is the distribution at high resolution sensitive of the forcing?

(0, :size of the cloud, p:density of air, <w_>:average vertical velocity)

Evaluate entrainment rates in the
high-resolution simulations

. 1

Focus on entrainment per cloud
statistics

1) Is the distribution of mass flux per cloud exponential at cloud
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