Direct Numerical Simulation of Climate Relevant Cloud Mixing Processes

Juan Pedro Mellado, Thijs Heus, Bjorn Stevens and Heiko Schmidt*

Max Planck Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany

1528 -

*Cottbus University of Technology, Siemens-Halske-Ring 14, 03046 Cottbus, Germany

Motivation & Goal

Cloud feedbacks remain a major source of uncertainty in climate models.

We investigate the role of buoyancy reversal by **evaporative cooling** at the cloud boundary due to turbulent isobaric mixing in the small scales (meters, tens of meters).

We study the Stratocumulus Top, a horizontal cloud boundary, and the Cumulus Subsiding Shell, a vertical configuration.

Direct numerical simulation (DNS) is used to resolve down to the diffusion scales.

Structure, transfer rates, time scales and reference data for single column models and large-eddy simulations are provided.

Stratocumulus Top

Magnitude of the gradient of the total water q_t . Horizontal size is 7.7 m. From Mellado (2010).

The buoyancy difference Δb quantifies the strength of the inversion at the cloud top. The evaporative cooling, measured by the saturation buoyancy b_s , leads to turbulent convection inside the cloud.

Case 1. Shear-free case ($\Delta u = 0$)

Turbulence does not break the cloud top (large Richardson number), but enhances mixing up to a constant entrainment rate

$w_e \propto (\kappa |b_s|)^{1/3}$

controlled by molecular properties (diffusivity κ). The constant of proportionality is obtained from the DNS.

determines the turbulent length scale

 $z^* \propto (B_s t^3)^{1/2}$

and velocity scale $w^* = (B_s z^*)^{1/3}$ inside the cloud.

Evaporative cooling effects are small. For the DYCOMS-II case, $w_e \simeq 0.16$ mm/s; $h \simeq 0.1$ m; $B_s \simeq 10^{-5}$ m²/s³. DNS run up to $z^* \simeq 2.5$ m, $w^* \simeq 30$ mm/s. From growth laws, 100 m are reached in about 45 min, $w^* \simeq 0.1$ m/s.

Conclusion: buoyancy reversal is too slow and too weak to control the cloud-top dynamics.

Case 2. Mean shear effects ($\Delta u \neq 0$)

A new dynamical balance is established, with an inversion thickness of the order of $(\Delta u)^2/(\Delta b)$ determined by a critical Richardson number (Mellado et al.).

There is a transition from the molecularly dominated regime towards an inviscid scaling precisely in the range of velocity differences across the inversion between 0.1 and 1 m/s. DNS reaches up to 0.5 m/s.

Formulation

1. Boussinesq limit.

2. Disperse liquid-phase is considered as a continuum.

3. Local thermodynamic equilibrium.

4. Liquid-phase diffusivity equal to that of vapor and dry air.

Total enthalpy h and total water q_t obey the same advection-diffusion equation. Thus, for a two-layer system,

 $\chi = \frac{q_t - q_{t,0}}{q_{t,1} - q_{t,0}} = \frac{h - h_0}{h_1 - h_0} \,.$

The mixture fraction χ indicates the relative amount of matter of the fluid particle that proceeds from layer 1.

$$\frac{\partial \chi}{\partial t} + \nabla \cdot (\mathbf{v}\chi) = \kappa \nabla^2 \chi$$
$$\frac{\partial \mathbf{v}}{\partial \mathbf{v}} + \nabla \cdot (\mathbf{v}\mathbf{v}) = -\nabla \pi + \nu \nabla^2 \mathbf{v} + b\mathbf{k}, \qquad \nabla \cdot \mathbf{v} = 0, \qquad b = b^e(\chi)$$

Cloud top remains flat \Rightarrow Buoyancy flux $B_s = w_e |b_s| / \chi_s$

The inversion still remains thin, less than 1 m.

Cumulus Subsiding Shell

The ascending motion of the cloud core due to a buoyancy difference Δb causes a turbulent shear layer at the cloud boundary, a first cause of lateral entrainment.

Evaporative cooling, measured by b_s , causes a descending turbulent jet at the lateral cloud boundary: the subsiding shell. This is a second cause of entrainment.

(subsiding shell)

For $\Delta b = \Delta u = 0$, an inviscid self-preserving regime is established in which the only relevant scales are a characteristic buoyancy fluctuation, constant in time and proportional to b_s , and the thickness δ of the turbulent shell, increasing in time.

Dimensional analysis shows that $\delta \propto b_s t^2$, and the mean velocity at the center $w \propto b_s t$ (free fall). Constants of proportionality are obtained from DNS, and are a function of χ_s , the saturation mixture fraction (the thermodynamic state of the system).

Parameters $\{\nu, \kappa, \Delta b, b_s, \chi_s, \Delta u\} \Rightarrow \{Pr, D, \chi_s, (\Delta u)^3/(\nu \Delta b)\}$

For typical values of $b_s \simeq 0.03 \text{ m/s}^2$, DNS run up to $\delta \simeq 0.40 \text{ m}$, $w \simeq 0.24 \text{ m/s}$. From growth laws, 10 m thickness is reached in about 4 min, $w \simeq 1.2 \text{ m/s}$, in agreement with observations and large-eddy simulations.

Conclusion: the subsiding shell is fast and strong enough to influence lateral entrainment.

References

B. Stevens, Atmospheric moist convection, *Annu. Rev. Earth Planet. Sci.*, 33:605–643, 2005
T. Heus and H. Jonker, Subsiding shells around shallow cumulus clouds, *J. Atmos. Sci.*, 65:1003–1018, 2008.
J. P. Mellado, The evaporatively-driven cloud-top mixing layer, *J. Fluid Mech.*, 660:1–32, 2010.

J. P. Mellado and B. Stevens and H. Schmidt, Mean shear effects in the evaporatively-drive cloud-top mixing layer, *to be submitted*

D. Abma, T. Heus and J. P. Mellado, Direct numerical simulation of evaporative cooling at the lateral boundary of shallow cumulus clouds, *J. Atmos. Sci.*, (submitted 2012)

Max-Planck-Institut für Meteorologie

Brandenburgische Technische Universität Cottbus

