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Introduction

The purpose of the ScalES project was to create reusable software
components to solve recurring issues in parallelizing and
optimizing climate models. The project was proposed to address
the following topics in particular:

I Parallel I/O

I Load Balancing

I Coupling

I Optimizations for massively parallel systems (exploit advanced
communication patterns and memory hierarchy)

I Demonstrate viability of the solutions in the widely used
MPI-ESM (then named COSMOS)

To address these issues, the following software components were
created or extended:

I CDI-pio, based on CDI (climate data interface library) is a
parallelized extension of the CDI GRIB and netCDF I/O
routines.

I ScalES-PPM (partitioning and parallelization module) is a
library consisting of descriptors for various partitioning schemes
and a collection of parallel, mixed-mode solvers.

I YAXT (yet another exchange tool) allows for a simplified
formulation of efficient MPI communication for data parallel
applications. YAXT is an extension and generalization of the
original Fortran prototype implementation (Unitrans).

I The OASIS 4 coupler was adapted for the triangle-based grid of
the Finite-Element Sea-Ice Ocean Model (FESOM) to couple
FESOM with ECHAM, the atmospheric component of MPI-ESM.

I An advanced Scatter-Gather facility that exploits the inherent
regularities of MPI-ESM decompositions.

Parallel Solver in ScalES-PPM

ScalES-PPM includes the following functionality:
I Solvers:

I Conjugate-Gradient Method
I Chebyshev Iteration
I Additive Schwarz Method
I Multi-Precision Iterative Refinement

I Preconditioners:
I Jacobi
I Block Symmetric SOR
I Block Incomplete LU with fill-in 0
I Block Incomplete Cholesky with fill-in p
I Block Modified Incomplete Cholesky with fill-in p

I Evaluation:
I Functions to calculate λmin and λmax of preconditioned systems.

The solvers have been validated on and performance tested with
MPIOM TP6ML20 on DKRZ blizzard. An FPGA accelerator
platform was also evaluated for potential performance benefits.

Figure: The solver functions are structured in an extensible manner
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Figure: Runtime for the CG solver with multiple preconditioners in comparison to
the reference SOR solver in MPIOM

CDI-pio

Design goals for CDI with parallel I/O

I Asynchronous I/O with respect to computation

I Backwards compatibility

I Small changes to CDI’s API

I Set-up options for different architectures, filesystems and MPI
implementations

I Best performance and scalability on DKRZ Blizzard (Power6,
AIX 6.1)

I Write on multiple hardware nodes
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Figure: CDI supplements the processes carrying out the model computation with
separate offload tasks for I/O

Improved Gather

A naive approach implements only the unavoidable data transfer
from all processes to the target. This does not account for the
overhead of inserting subarray data into the array. This overhead
is concentrated at the target.
Our approach tries to reduce the overhead by assembling
intermediate subarrays which possess the contiguous property
within the target’s array. These can be inserted directly using a
collective mpi routine. The assembly of these subarrays can be
done in parallel. Thus the overhead is distributed to several
processes whose optimal number depends on the latency of the
communication.
This results in a two-phase gather that, e.g. for a 192x96x47
double precision array distributed over 8x4 processes, is one order
of magnitude faster than the naive approach (measured on IBM
Power6 p565 running AIX). With higher parallelization one can
further improve performance by adapting the procedure to the
usually nonuniform communication properties of the interconnect,
e.g., shared memory communication for the first phase and
InfiniBand communication for the second.

Figure: Simple gathering compared to a 2-phase implementation
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Figure: Run-time for gather decreases by a factor of 10 when comparing näıve and
2-phase gather

YAXT

The traditional approach to domain decomposition in model
software via direct MPI calls incurs too much complexity, too
many errors and results in low flexibility because of the low
abstraction level MPI provides. Unitrans was conceived as a
tool to describe arbitrarily decomposed enumerable data
structures. This initial Fortran-only implementation showed
problems because of inherent limitions of the Fortran type model
and some simplifications, which only became apparent in the
course of the initial implementation. Thus the concept was
reimplemented in the C programming language which allows for
type-agnostic functions under the name YAXT.
Main concepts of Unitrans and YAXT:
I Decompositions

I Describe the logical decomposition of global data
I By means of a distributed index

I Type agnostic
I reals, integers, arrays, cows and flying saucers. . .

I Local Data representations
I adds physical type and storage information

I via offset arrays and complex type descriptors

I Transposition Templates
I Describes the logical exchange pattern between two different

decompositions
I Via distributed communication maps

I Transposition Instances
I executable plans describing how to perform a transposition between two

local data representations in different decompositions
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Decomposition 3

Local indices

i(0) = (1,2,7,8,13)
i(1) = (3,4,5,6,11,12,18)
i(2) = (9,14,15,19,20,21)
i(3) = (10,16,17,23,24)

Local indices

i(0) = (1,2,3,4,5,6)
i(1) = (7,8,9,10,11,12)
i(2) = (13,14,15,16,17,18)
i(3) = (19,20,21,22,23,24)

Local indices

i(0) = (1,7,13,19,5,11,17,23)
i(1) = (2,8,14,20,6,12,18,24)
i(2) = (3,9,15,21)
i(3) = (5,11,17,23)

Figure: Examples of local index descriptions, can be computed with partitioning
functions from PPM

(Re-)partitioning with ScalES-PPM

Using the default ECHAM decomposition, load-imbalance in
MESSy/EMAC at medium scale is severe and the run-time varies
by a factor of 4, i.e. some MPI tasks are idle for 75% of the time.
Therefore a static round-robin decomposition for grid-point data
(which includes all chemical species) was implemented that

balances chemistry computations well for NP ≥ 32 where N is the
number of grid-points and P the number of processes, but this
only results in run-time benefits when additionally using the
advanced communication methods of Unitrans.

Figure: The vertical, longitudinal and latitudinal sums of the KPP solver run time
show that the imbalance is correlated with zones of sunrise and sunset.
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Figure: Load-balanced round-robin decomposition and Unitrans communication
result in improved run-time for EMAC T42L90MA on DKRZ blizzard with SMT
mode

To go to even higher scale, a dynamic parallel repartitioning
scheme was implemented that swaps computationally expensive
for cheap domain parts that keeps the number of elements per
task constant (thus removing the need for reallocations). It has

demonstrated performance increases for NP < 32.
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