
Hamburg, Dezember 2001

by

Michael Voßbeck • Thomas Kaminski

Ralf Giering • Martin Heimann

The Adjoint of TM2

Technical Report
No. 1

Support for Climate- and Earth System Research at the Max Planck Institute for Meteorology, Hamburg

Support for Climate- and Earth System Research at the Max Planck Institute for Meteorology, Hamburg

Postal:

Modelle und Daten

Max-Planck Institut für Meteorologie

Bundesstrasse 55
D-20146 Hamburg
Germany

Office:

Tel.: +49 - (0)40 411 73 - 397

Fax: +49 - (0)40 411 73 - 476

e-mails:

Office: mad_office@dkrz.de

Data Section: data@dkrz.de

Model Section: model@dkrz.de

Internet:

Home Page: http://www.mpimet.mpg.de/Depts/MaD/

Cover figure: Graphical representation of the sensitivity matrix for the mean annual CO2 concentration at
the station Ascension Island (8° S, 14° W) in the South Atlantic ocean.The gray shading in a particular
model grid cell indicates the magnitude of the concentration response at the Ascension island station
generated by a local annual unit source (see Kaminski et al.,1999a).

Hamburg, Dezember 2001

The Adjoint of TM2

Technical Report�
No. 1

Support for Climate- and Earth System Research at the Max Planck Institute for Meteorology, Hamburg

Michael Voßbeck1,2, Thomas Kaminski1,3,�
Ralf Giering3, and Martin Heimann4

1Max-Planck-Institut für Meteorologie�
Bundesstraße 55, D-20146 Hamburg

2Technische Universität Berlin�
Straße des 17. Juni 136, D-10623 Berlin

3FastOpt�
Martinistraße 21, D-20251 Hamburg

4Max-Planck-Institut für Biogeochemie�
Postfach 100164, D-07701 Jena

ISSN 1619-2257

Diese Reihe erscheint parallel in�
gedruckter Form (ISSN 1619-2249)

Gruppe Modelle & Daten

Contents

1 SUMMARY PAGE 2

2 Automatic Differentiation, Adjoint, and Jacobian of TM2 3

2.1 TM2 . 3

2.2 Automatic differentiation . 3

2.3 Jacobian matrix . 5

3 Modelling software for adjoint (package tm2adj) 7

3.1 Generation of the Adjoint Model . 8

3.2 Running the adjoint . 9

4 Modelling software for Jacobian (package tm2jac) 11

5 Graphics software 15

6 Acknowledgments 16

7 Figures 18

1

1 SUMMARY PAGE

This document describes the software package of the adjoint to the global three-
dimensional atmospheric transport model TM2, which has been generated automatically
by means of the Tangent linear and Adjoint Model Compiler (TAMC). Using the example
of CO2 as a passive tracer, the document demonstrates how the adjoint may be used to
efficiently compute the transport model’s Jacobian matrix, which quantifies the sensitiv-
ity of the simulated concentrations at atmospheric monitoring stations with respect to
the CO2 surface exchange fluxes. The software package includes examples of Jacobian
matrices for a number of stations, several prescribed surface flux fields, and a module
to simulate the concentrations at observational sites by multiplication of the Jacobian
matrix with prescribed flux fields. Furthermore the package contains a graphics library
based on the GRADS software system for visualisation of the Jacobian, the flux fields,
the simulated concentrations, and the maps of the station locations.

2

2 Automatic Differentiation, Adjoint, and Jacobian
of TM2

2.1 TM2

TM2 is a three-dimensional atmospheric transport model, which solves the continuity
equation for an arbitrary number of atmospheric tracers on an Eulerian grid spanning the
entire globe (see Heimann [1995]). It is driven by stored meteorological fields derived from
analyses of a weather forecast model or from output of an atmospheric general circulation
model. Tracer advection is calculated using the “slopes scheme” of Russel and Lerner
[1981]. Vertical transport due to convective clouds is computed using the cloud mass flux
scheme of Tiedtke [1989]. Turbulent vertical transport is calculated by stability dependent
vertical diffusion according to the scheme by Louis [1979]. Numerically, in each base time
step the model calculates the source and sink processes affecting each tracer, followed by
the calculation of the transport processes. The spatial structure of the model is a regular
latitude-longitude grid and a sigma coordinate system in the vertical. The base “coarse
grid” version of the model uses a horizontal resolution of approximately 8o latitude by
10o longitude (the horizontal dimension of the grid is ng = 36 × 24, see Figure 1) and 9
layers in the vertical dimension.

2.2 Automatic differentiation

This section describes how a function composed of a series of elementary functions may
be differentiated by use of the chain rule, which constitutes the underlying principle of
the automatic differentiation. In the present context elementary functions refer to single
statements of the TM2 code. For the automatic generation of the derivative computing
code, it is crucial that the Jacobians of the single steps can be constructed according to
simple rules. Let

H : IRn → IRm

X �→ Y

be a function that is composed

H = HK ◦ . . . ◦ H1 =:
K⊙
l=1

Hl (1)

of K differentiable elementary functions:

Hl : IRnl−1 → IRnl (l = 1, ..., K)
Z l−1 �→ Z l .

Even ifH is not given symbolically, i.e. by a formula, but instead by a numerical algorithm
such as the TM2 model code, the Jacobian matrix representing the first derivative of H

∂H(X)

∂X
:=

∂H1(X)
∂X1

. . . ∂H1(X)
∂Xn

...
...

∂Hm(X)
∂X1

. . . ∂Hm(X)
∂Xn

3

can be computed using the chain rule of differentiation from the Jacobians of the elemen-
tary functions

∂H(X)

∂X

∣∣∣∣∣
X=X0

=
∂HK

∂ZK−1

∣∣∣ZK−1=ZK−1
0
· . . . · ∂H

1

∂Z0

∣∣∣
Z0=X0

. (2)

Thereby

Z l
0 := Hl ◦ . . . ◦ H1(X0) (1 ≤ l ≤ K)

denote the intermediate results, through which the derivatives of the elementary functions
depend on X0.

For evaluating the multiple matrix product in Eq. (2) there are many possibilities. De-
pending on the size of the elementary matrices they differ in the number of operations
that have to be performed and in the size of the matrices containing the intermediate
derivatives. The most obvious strategies for the computation of the matrix product are
the forward and the reverse mode, where forward and reverse refer to the order of the
operations in the calculation: Operating in forward mode, the product is evaluated from
the right to the left, which means that the product is computed in the same order as
for evaluation of H in Eq. (1). Alternatively, the product can be evaluated from the
left to the right, which is denoted as reverse mode, because the order is opposite to the
order for evaluation of H in Eq. (1). In this procedure the intermediate matrices af-

ter the l-th step of the composition (1) contain ∂(Hl◦...◦H1)(X)
∂X

∣∣∣
X=X0

in forward mode and

∂(HK◦...◦Hl+1)(Zl)
∂Zl

∣∣∣∣Zl=Zl
0

in reverse mode. Thus forward and reverse refer to the directions in

which the intermediate derivatives are propagated by the respective algorithm for evalu-
ation of Eq. (2). According to Eq. (2) the forward mode step corresponding to the l-th
step of the composition (1) is:

∂(Hl ◦ . . . ◦ H1)(X)

∂X

∣∣∣
X=X0

=
∂Hl

∂Z l−1

∣∣∣∣
Zl−1=Zl−1

0

· ∂(Hl−1 ◦ . . . ◦ H1)(X)

∂X

∣∣∣
X=X0

. (3)

With respect to the standard inner product the adjoint matrix of ∂H(X)
∂X

is simply the
transposed matrix. Thus Eq. (2) can be written in the form

∂H(X)

∂X

∣∣∣∣∣
X=X0

∗
=
∂H1

∂Z0

∣∣∣
Z0=X0

∗
· . . . · ∂H

K

∂ZK−1

∣∣∣ZK−1=ZK−1
0

∗
. (4)

This means, the reverse mode step corresponding to the l-th step of the composition (1)

is performed by multiplying the intermediate matrix ∂(HK◦...◦Hl+1)(Zl)
∂Zl

∣∣∣∣Zl=Zl
0

by the adjoint

of ∂Hl
∂Zl−1

∣∣∣∣
Zl−1=Zl−1

0

:

∂(HK ◦ . . . ◦ Hl)(Z l−1)

∂Z l−1

∣∣∣∣
Zl−1=Zl−1

0

∗
=

∂Hl

∂Z l−1

∣∣∣∣
Zl−1=Zl−1

0

∗
· ∂(HK ◦ . . . ◦ Hl+1)(Z l)

∂Z l

∣∣∣∣Zl=Zl
0

∗
. (5)

Therefore the reverse mode is also called adjoint mode.

As is illustrated by Figure 2 for a scalar valued function (m = 1) of n = 5 variables, in the
forward mode all matrices containing intermediate derivatives have n columns, whereas in

4

the reverse mode they have m rows. Therefore in forward mode the number of operations
as well as the storage requirements are proportional to n, whereas in reverse mode they
are proportional to m.

In general, the intermediate results Z l
0 of the preceding step are required for the evaluation

of the derivatives of the elementary functions (see Eq. 2). While in the forward mode
the intermediate results are required in the same order as computed, in the reverse mode
they are required in reverse order. Therefore, providing of the intermediate results is
more complicated in reverse mode and in general implies extra operations and/or extra
storage requirements [Giering and Kaminski , 1998]. This has to be taken into account
when comparing the efficiency of reverse and forward mode for a particular function H
(see section 3.1).

The Tangent linear and Adjoint Model Compiler [TAMC Giering , 1997] is a tool that
automatically generates code for the evaluation of the first derivatives of a given function
H(X) represented as a FORTRAN 77 computer program. The TAMC is a source to source
translator that accepts essentially FORTRAN 77 code for the evaluation of a function and
generates code for evaluation of its Jacobian. As requested by the user, the generated
code operates either in forward or reverse mode. The schemes for forward or reverse
mode essentially represent implementations of the general rules (3) and (5) respectively
described above. This implementation is not unique: The scheme chosen for the TAMC
is based on a few principles [Giering and Kaminski , 1998], which essentially have been
suggested by Talagrand [1991]. Rigorous application of these principles yields rules for
differentiating the single statements a code is composed of. These simple rules can be
applied automatically by source to source translators like TAMC or similar tools such as
Odyssée [Rostaing et al., 1993].

2.3 Jacobian matrix

Section 2.1 has introduced the transport model TM2, and section 2.2 has introduced the
concept of Automatic differentiation (AD). In this section we explain how this concept is
applied to derive an adjoint of TM2. Note that in using this (standard) terminology an
important aspect of the concept of AD is obscured, i.e. there does not exist an adjoint
to a “transport model”, but merely to a function (which of course contains the model).
Hence, before generating an adjoint, a function has to be defined, which includes the
definitions of the input and output variables and the setup of the transport model. This
is illustrated in this section. More details are to be found in Kaminski et al. [1999a].

The function to be differentiated maps a vector of CO2 exchange fluxes onto a vector
of simulated CO2 concentrations. While the fluxes are defined on every TM2 surface
level grid cell, the concentrations are taken at a number of particular locations in the
model grid. For input and output variables a temporal resolution of one month is used.
The model is driven with the meteorological analyses of a particular year (fields for the
year 1987 are provided). The model is driven with the same analysis fields for 4 years,
and the same flux fields are repeated year by year. In the fourth year, the simulated
concentrations contain a spatially varying offset, a global trend, and a spatially varying
seasonal cycle. When using the cyclostationary mean flux field over a given multi-year
target period, these concentration values are to be interpreted as one representation of the

5

ensemble of the mean quantities over the target period. To compute the concentrations
at a particular location, horizontal interpolation in the appropriate vertical level of TM2
is used.

In summary, this defines a function, the derivative of which is represented by the Jacobian
matrix mapping a vector of 12 (month) × 36 × 24 (horizontal TM2 grid) flux components
onto a vector of 12 (month) × nsta concentration components, where nsta denotes the
number of sites.

Note that this Jacobian contains all transport information relevant to this particular model
setup, i.e. the multiplication of the Jacobian with a given flux field replaces running the
model with this flux field as input. Moreover, the Jacobian is a most powerful tool that
allows decomposing a given feature of the simulated monthly mean concentrations at the
station locations such as the annual mean, a monthly mean, or the seasonal cycle with
respect to the modelled contributions by any component of the flux vector. Examples
are given in Kaminski et al. [1996, 1999a]. Moreover, the Jacobian allows high resolution
atmospheric transport inversions on the full grid of TM2 [Kaminski et al., 1999b]. This
approach circumvents aggregation errors, which arise in in coarse grid large region in
versions [Kaminski et al., 2001].

6

3 Modelling Software for Adjoint (package tm2adj)

For the model setup of TM2 described in section 2.3, using the concepts described in
section 2.2, the adjoint has been generated automatically by means of TAMC version
4.62. To ensure an accurate interpretation by (that version of) the TAMC and to fit
within the modelling framework provided with TAMC [Giering , 1997], the structure of
the model code had to be slightly rearranged. Since TAMC is a software tool under
development, both the program itself and the modelling framework keep on changing.
Hence, rather than providing the model source code suitable for interpretation by version
4.62, we provide the generated derivative code and the complete framework needed to
compile, link and run this code. It is contained in the software package tm2adj, which
contains all input to compute the adjoint of TM2. The output generated by the adjoint
are Jacobian matrices mapping exchange CO2 fluxes onto station data as described in
section 2.3.

tm2adj is only run on a Cray C90 supercomputer, because it uses huge datasets of
preprocessed meteorological input data in Cray binary format. Hence we have arranged
a single Make.host file. In order to port the code on a different machine this file would
have to be modified as well as the binary input data would have to be regenerated.

Besides the files Makefile and Make.host, tm2adj contains a few sample job control
scripts and a number of subdirectories. In the following we first describe the subdirecto-
ries. Then we discuss the adjoint model and its generation (see section 3.1). And finally
we describe one of the job control scripts that run the adjoint (see section 3.2).

jacobian The directory contains a Jacobian matrix in .tm format (see Figure 10), which
has been previously generated and is used to check a new installation as well as a
Makefile.

libio Contains the Fortran source code of a number of very simple routines for reading
and writing data in various formats. Not all of the routines are actually needed.
Executing make generates a library tm2adj/libio.a, which is linked to the main
programs in tm2adj/prgs that run the adjoint and postprocess generated Jaco-
bians.

libtamc Contains the Fortran and C source code of a number of routines used by the
TAMC generated source code. The library is linked to the main programs in
tm2adj/prgs that call the adjoint.

meteo Contains two files with the preprocessed meteorological driving fields used by
TM2. The files have been prepared from analyses of the ECMWF forecast model
for 1987 by the preprocessing package described in Heimann [1995]. They are Cray
binary format. The fields are available to the model every 12 hours and comprise, in
total, 5 fields defined on the entire grid, i.e., 720× 5ng, with ng = 720× 36× 12× 9
being the grid dimension.

model Contains two files of the Fortran sources of the modified forward and the adjoint
codes, respectively. It is necessary to run the modified forward code, because it
contains subroutine calls to arrange storing of required variables, which then are
read via subroutine calls in the adjoint code (see details in section 3.1).

7

prgs The directory contains two programs that run the adjoint and two programs that
postprocess the generated Jacobians. The program prgmcheck.F compares the
derivative of the simulated concentration at the stations with respect to a January
exchange flux in a particular grid cell in the northern hemisphere to an approxi-
mation of that derivative by finite differences. The program prgmrev.F runs the
adjoint. The program msplit QSC splits up the adjoints output file into the Jaco-
bian matrices belonging to individual stations. The program msplit TD does the
same for the adjoint’s setup with interannually varying exchange fluxes.

station The directory contains 6 examples of station localisation files (see section 5) of
networks.

3.1 Generation of the Adjoint Model

As is obvious from Eq. (5), the intermediate results Z l
0 (required variables) have to be

provided for the adjoint run. Unlike many other adjoint applications in meteorology and
oceanography, in (offline) transport models many of the required variables quantify the
dynamic state of the atmosphere, which is computed from the preprocessed meteorological
fields. These required variables do not depend on the control variables, i.e. in our case the
sources and sinks. In the terminology of adjoint code construction they are called passive
variables. Hence, in principle, they could be computed and stored once and then be read
during each adjoint run. Since this would require disk space of about 1.3 gigawords (GW),
(on a Cray C90) it is more efficient to recompute the required values during every adjoint
run. In order to reduce these storage requirements during the adjoint run it is favorable to
include a so-called checkpointing scheme [Griewank , 1991] in the adjoint model: In a first
integration of TM2 the state of the model is saved at checkpoints in intervals of 6 days on
disk. During the adjoint run the checkpoints are used as starting points for recomputation
and storing of all required values for the six day interval in a second file. Finally, for the
adjoint computations these stored values are read. The storage requirements are reduced
considerably at the cost of an additional model integration. This checkpointing scheme
also is implemented automatically by the TAMC.

One level of checkpointing is applied by splitting the main time loop in an inner and
an outer loop (subroutines func and tracer). In the outer loop the air mass (variable
m) and the mixing ratio and its slopes (variables rm, rxm, rym and rzm) are stored.
Furthermore, for computation of monthly mean concentrations, an accumulated mixing
ratio (variable rmacc) and two scalar values (variables rtloc and rxmod) are stored. The
variables m, rm, rxm, rym, rzm and rmacc are defined on the entire model grid, i.e.
they are of dimension 36 × 24 × 9 and thus per checkpoint 6 × 36 × 24 × 9 + 2 = 46558
W are to be stored.

In the inner loop some quantities of the computation of the advective (variables am, bm,

cm and sbm) and convective (variable conv) air flux are stored. For the period in which
data are available the air mass is stored in order to compute faster the mass mixing ratio
from the tracer mass. Also three scalar values values (variables ihelp, rtloc and rxmod)
are stored. Further, within the advection subroutine advect the air mass (variable m) is
stored seven times (before any of the seven calls of the advective subroutines dynamu,

dynamv and dynamz). The variables m, am, bm, cm and sbm are defined on the entire

8

model grid, the dimension of conv is that of model horizontal grid times the vertical
dimension of 9. Hence for the spin up period per time step (7+9+4)×36×24×9 = 155520
W have to be stored, while for the period with data per time step (7 + 9 + 4 + 1)× 36×
24× 9 + 3 = 163299 W have to be stored.

There is one checkpoint every 6 days. The model has 360 days per year and runs for 4 years
including spin up. Hence there are 240 checkpoints and a file adtape of 240×46558 ≈ 11.2
MW (mega words) is written. The integration time step is 4 hours. Hence in 6 days there
are 36 time steps. In the period with data, a file intape of size 36 × 163299 ≈ 5.9 MW
is written.

3.2 Running the adjoint

In earlier versions the adjoint was constructed to compute the derivative of a scalar valued
function specifically quantifying the misfit of simulated concentrations to observed ones.
Thereby the adjoint could be run in a variety of modes, e.g. to perform an optimisation
of the input exchange fluxes or to generate “synthetic” or “pseudo” data. Since the
Jacobian contains all the necessary transport information, many of these modes are not
used anymore and thus are not dicussed here. The only two modes that have ’survived’
are denoted by mre for computing the Jacobian and mch for computing the Jacobian and
checking the derivative with respect to a control variable by comparison with a finite
difference approximation.

An example of a job control script that performs such a check is depicted in Figures
3, 4, and 5. The QSUB commands on top interact with Cray’s network queuing system
(see manual pages of qsub). Next is a group of environment variables including the two
modes. For testing purposes a testing version that runs for only 12 days is selected by
setting the variable test to on. year denotes the year of the meteorological data (driving
fields for 87 are provided). mattype describes whether to use the setup described in
section 2.3 (QSC) or one where the fluxes can change from year to year over the (four
year) simulation period. The next two variables denote the file containing the stations for
which the Jacobian is to be computed and their number. Next is the path, where tm2adj
is installed. The last two variables denote an identifier for the run and the disk where the
working directory for the run is to be created which contains all intermediate files.

In the following a few of the standard TM2 variables are set (see Heimann [1995]). Chang-
ing those might make some adaptations in the code necessary.

Next, a number of variables determining the data side of the model are set, again, changing
those might require adaptations in the code. These variables denote the number of output
values per site, the number of output values over all, and the time interval within the
simulation period at which these values are taken. A number of path names are set.
The working directory, station definition file, the main programs and the libraries are
prepared, the model is compiled and linked to the libraries and the appropriate main
program. Using preprocessor directives, a number of the settings in the variables are
passed to model.

Before executing the program, the Cray assign feature is used to arrange writing the
Jacobian in ieee format suitable for visualisation by GrADS (.gad). The program first

9

reads a namelist of variables that are specific to the adjoint and then the standard TM2
input containing a list of the driving meteorological fields as well as a second namelist.
Finally a main program is called that splits the output into Jacobians for any station.

A .log file of the corresponding model run is depicted in Figures 6 and 7. It shows the
compiler’s output followed by the variables of the additional namelist and the standard
TM2 one. Then it shows the comparison of the derivative (column 5) of all 12 (monthly
mean) output concentrations (at station MLO, columns 7 and 8) with respect to the input
variable no. 507 (column 2) to a finite difference approximation (column 4) with stepsize
0.1 KgC/gridcell/year. The adjoint model run terminates with some statistics. The final
lines show the split of the Jacobian.

10

4 Modelling Software for Jacobian (package tm2jac)

This section describes the software package tm2jac, which is designed to demonstrate
the multiplication of a jacobian matrix with a flux field (see section 2.3). The package is
intended to be a starting point, which the user can extend by simple modifications. The
structure of the package consists of a main directory, tm2jac, and a number of subdirec-
tories that contain the necessary input data, the source code and auxillary information.
In addition the subdirectory tm2jac/libgrads, which is briefly described in section 5,
contains the graphics software to visualise all quantities of interest. Since the package is
intended to run on a variety of unix type computer platforms, all data are stored in an
ascii format (extension .tm).

The package structure resembles that of the TAMC utility [TAMC Giering , 1997]. It
is not feasible to construct such a package in an absolutely portable way for all of the
existing variety of Unix platforms. To simplify portability and handling of tm2jac, and
to ensure the transparency of all commands executed on the Unix level, we employ the
Unix make command [see, e.g, Oram and Talbott , 1991]. make renders the package to a
large extend self explaining.

The actions that tm2jac is designed to take are documented by the targets of the Make-
file it contains (see Figures 8 and 9). The targets are built by the command line input

make <target>

If the target is omitted, then make picks the first target in the Makefile. To see the
actions without executing them, use the option -n. Most of these targets are built by
invoking make recursively in some of the subdirectories. We document this package
by first a brief description of these targets and further below by a description of all
subdirectories.

Make.host Tries to identify the architecture of the local machine using the script
bin/getarch, and then copies the corresponding Make.<architecture> file from
the directory tm2jac/config to tm2jac/Make.host. If there is no appropriate
Make.host file for the local architecture, a default host file is copied. In case
the machine or the environment have settings different from those expected by the
Make.host file, it will have to be modified.

install Generates the library tm2jac/libio.a, by calling make in tm2jac/libio. Then
by calling make in tm2jac/mult it compiles the main program tm2jac/mult
and links it to tm2jac/libio.a. Eventually, it executes tm2jac/mult/mult, to
multiply the Jacobian for the station MLO with the flux field flux/apo jgr.tm
yielding a time series of concentrations conc/c0mod MLO apo jgr.set.

check Compares the result of the multiplication performed by the target install, i.e.
conc/c0mod MLO apo jgr.set, to a file of previously generated concentrations
conc/tst.set using the Unix diff command.

clean Removes backups made by the editor. Invokes make clean recursively in all
subdirectories.

11

scratch Reconstructs the initial status of tm2jac by removing all files that have been
generated from the primary source and data files (such as executables or libraries).
Invokes make scratch recursively in all subdirectories.

tar First make removes all files that can be reconstructed by building the target scratch.
Then it creates a tar file named ../tm2jac.tar that includes all remaining files.

tar.gz, tar.Z Gzips or compresses the tarfile.

As an example, the command line input

make check

does all the installation plus a check of the simulated concentrations.

tm2jac contains a number of subdirectories which are described in detail below (see the
directory tree shown in Figure 12):

bin Contains the scripts getarch and mvgrads. getarch is called without any argu-
ments and returns the architecture of the machine it is executed on. It is used
during the installation of the package in order to choose the proper Make.host
file from the directory config. mvgrads is called to rename the pairs of files re-
quired by the graphics software for each data item as mentioned in the description
of tm2jac/convert. The arguments are the old kernel <oldbasename> and the
new kernel <newbasename> of the filenames.

conc The directory contains 2 examples of concentration time series in .set format (a sim-
ple ASCII format, which is also used by the graphics program Xvgr [Turner , 1998]),
a number of .ipt files serving as input to the graphics package, and a Makefile.
All figures of the concentration time serieses presented in graphics.ps can be re-
constructed by entering make doc-bw ”PIC=<number>” in the command line.
Colored versions of them are derived by entering make doc ”PIC=<number>”.
The concentration time series check.set contains the result of the same matrix
multiplication that should be generated by the target check in tm2jac/Makefile,
i.e. the product of the flux field apo jgr.gad (see fluxes) with the Jacobian for the
station MLO (see jacobian). The first column refers to the month and the second
has the concentration. It is used to check the installation on a new machine. The
example concentration time series cobs 81-86.set is the one used for the inversion
described in Kaminski et al. [1999b], It consists of monthly mean values and un-
certainties derived form observed CO2 concentrations [Globalview–CO2 , 1996]. All
concentrations are in parts per million volume (ppmv). There are records for the 34
stations named in station/staloc obs.d and in the same order. In each record each
row contains month, concentration, and uncertainty. The targets of the Makefile
generate and visualise .gad and .ctl files of the concentrations.

config Contains a variety of Make.host files, with machine specific settings. The appro-
priate Makefile might have to be be adapted to local particularities. The naming
convention is provided in Make.<architecture>

12

convert For portability reasons, all data are provided in the ASCII formats .tm (de-
scribed in Figure 10) and .set (see conc). The graphics software (see section 5)
based on GrADS, however, uses pairs consisting of a binary direct access file (suf-
fix .gad) and an ASCII description file (suffix .ctl). The directory contains the
Fortan programs set2grads.F, tmflux2grads.F, and tmjac2grads.F to convert
data files for observed concentrations, fluxes, and jacobians respectively to the input
format required by GrADS.

doc Contains a postscript version techrep.ps of the present document that you are
reading. Furthermore there is a second postscript document graphics.ps, which
explains the graphics software in detail. Since this is a black and white document
also, which cannot demonstrate all features of our graphics package, we put a few
color pictures in this directory and refer to them in graphics.ps.

flux The directory contains 3 examples of flux fields in .tm format (see Figure 10), a
number of .ipt files serving as input to the graphics package, and a Makefile. The
examples are the a priori (apr jgr.tm) and the a posteriori (apo jgr.tm) flux fields
of an inversion by Kaminski et al. [1999b] and a flux field computed by the ter-
restrial biosphere model SDBM of Knorr and Heimann [1995]. All seven GrADS
created figures corresponding to these examples, which are documented in graph-
ics.ps, can be reconstructed by entering make doc-bw ”PIC=<number>”
in the command line. Colored versions can be created by entering make doc
”PIC=<number>”. The flux fields consist of 36 × 24 monthly values on the
TM2 grid (see Figure 1 for order of the grid), the order of the dimensions is defined
in Figure 10. The unit of the monthly fluxfields is kg Carbon/gridcell/year. The
model uses the calendar length of the months, i.e. Although the model internally
uses 31,28,31,30,31,30,31,31,30,31,30,31 days for January to December, this is inter-
nally adjusted, such that a constant flux throughout the year is represented with
the same numerical value for all months. Thus, in order to compute the monthly
flux total of a particular month, the numbers in the flux fields have to be scaled
by ndaymon/365, where ndaymon is the number of days in the particular month. The
target of the Makefile generate .gad and .ctl files of the fluxes and then visualise
these.

jacobian The directory contains 10 examples of Jacobian matrices in .tm format (see
Figure 10), a number of .ipt files serving as input to the graphics package, and a
Makefile. The Jacobians quantify the derivative of a simulated concentration with
respect to a flux, for which we use our concentration and flux unit, i.e. 1 ppmv/(kg
Carbon/gridcell/year). The target of the Makefile generate .gad and .ctl files of the
Jacobians and then visualise these. Some examples are shown in graphics.ps and
can be recreated by entering make doc-bw ”PIC=<number>” in the command
line (colored pictures can be achieved by entering make doc ”PIC=<number>”).

libgrads Contains the graphics library based on GrADS [Doty , 1995]. It is briefly de-
scribed in section 5, a detailed description can be found in the postscript document
graphics.ps.

libio Contains the Fortran source code of a number of very simple routines for reading
and writing data in various formats. Not all of the routines are actually needed.

13

Executing make generates a library tm2jac/libio.a, which is linked to the main
programs in tm2jac/mult and tm2jac/convert, when executing make in their
respective directories.

mult Contains the Fortran program mult.F, which carries out the matrix multiplication
and a Makefile with targets:

matmult First make compiles mult.F, links the file tm2jac/flux/apo jgr.tm
to the input file fluxes.tm (see Figure 10), the station localisation file
tm2jac/station/staloc MLO.d to file staloc.d and the directory
tm2jac/jacobian to the output directory jacobian. Then it runs the exe-
cutable mult, runs tm2jac/mvgrads to incorporate the identifier MLO apo jgr
in the names of the generated .gad and .ctl files, moves all the output to
tm2jac/conc, and removes the links from the beginning.

mmult Demonstrates the same type of matrix multiplication for different Jacobians
and different flux fields by multiple builds of the target matmult by invoking
make with different settings of the macros of the Makefile: STA for the station
and FLUX for the flux field.

station The directory contains 7 examples of station location files of networks (for more
information about this topic see graphics.ps), a number of .ipt files serving as input
to the graphics package (see section 5), and a Makefile. The target of the Makefile
visualise the respective networks. In graphics.ps you find 2 examples of network
maps, that can be regenerated by entering make doc-bw ”PIC=<number>” in
the command line.

14

5 Graphics Software

The graphics software for the TM2 adjoint modelling system was designed as a compromise
between two partly contradictory requirements: (1) to quickly obtain an impression of
the orders of magnitudes and general structure of the computed quantities and (2) to
generate high quality pictures, which should be both, reproducible and easily adaptable
to slight changes in either the displayed data set or the desired graph layout.

Our graphics software is based on GrADS [Doty , 1995], which is available free of charge
via the world wide web. To meet our requirements, we extended GrADS by libgrads, a
library of GrADS scripts. Some of these, which we call ”top level scripts”, may be invoked
directly by the user. With these scripts, surface flux fields, differences (sums, quotients) of
surface flux fields, Jacobians, concentration time serieses, and global maps indicating the
locations of observational sites, may be displayed. The requested information about the
data and the layout may be entered at the beginning in the GrADS command window, or
transferred to the scripts by special input files. The top level scripts also allow a simple
menu control for browsing through various aspects of the data or for printing.

Further features are:

automatic level setting The contouring levels for flux fields and Jacobian matrices
are set automatically. The user has the choice of linear or logarithmic scaling. This
feature is extremely convenient whenever a large number of plots are to be generated.
Alternatively, for high quality plots, the user may customize the levels interactively
in the GrADS command window. Automatic level setting also applies to the axes
of all line graphs.

center For grfill (color filled grid boxes) and shaded plots (color filled isolines), it is
possible to emphasize a a single (neutral) value within the range of the quantity
to be displayed, which we name center. A small band around center will appear
white on the plot, if center actually lies between the minimum and maximum of the
quantity to be displayed.

TM2 world map We use a special world map, on which coast lines are defined by the
land-sea-mask of the TM2 grid (see section 2.1), when displaying station maps, flux
fields, or Jacobian matrices.

colors As an extension to the GrADS built in rainbow color palette, additional color
palettes including one greyscale palette are available for shaded and grfill pictures.

In addition, there are exist additonal scripts for the the setup of the data (.gad) and
descriptor (.ctl) files. For displaying network maps of observational sites, special files
detailing the station locations are needed. A detailed description of the graphics package,
including instructions for usage and various examples, can be found in graphics.ps in
the subdirectory doc.

15

6 Acknowledgments

The authors thank Peter Rayner for valuable comments on the manuscript.

This work was supported by the Bundesministerium für Bildung und Forschung (BMBF)
under contract number 01LA9898/9.

References

Doty, B., Grid Analysis and Display System, V1.5.1.12 , 1995, unpublished, available from
http://grads.iges.org/grads.

Giering, R., Tangent linear and Adjoint Model Compiler , Users manual , 1997, unpub-
lished, available from http://puddle.mit.edu/∼ralf/tamc.

Giering, R., and T. Kaminski, Recipes for Adjoint Code Construction, ACM Trans. Math.
Software, 24 , 437–474, 1998.

Globalview–CO2, Cooperative Atmospheric Data Integration Project - Carbon Dioxide
[CD-ROM], NOAA/CMDL, Boulder, Colo., 1996.

Griewank, A., Achieving logarithmic growth of temporal and spatial complexity in reverse
automatic differentiation, Preprint MCS–P228–0491 , Mathematics and Computer Sci-
ence Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439–
4801, 1991.

Heimann, M., The global atmospheric tracer model TM2, Tech. Rep. 10 , Max-Planck-
Institut für Meteorologie, Hamburg, Germany, 1995.

Kaminski, T., R. Giering, and M. Heimann, Sensitivity of the seasonal cycle of CO2 at
remote monitoring stations with respect to seasonal surface exchange fluxes determined
with the adjoint of an atmospheric transport model, Phys. Chem. Earth, 21 , 457–462,
1996.

Kaminski, T., M. Heimann, and R. Giering, A coarse grid three-dimensional global inverse
model of the atmospheric transport, 1, Adjoint model and Jacobian matrix, J. Geophys.
Res., 104 , 18,535–18,553, 1999a.

Kaminski, T., M. Heimann, and R. Giering, A coarse grid three-dimensional global inverse
model of the atmospheric transport, 2, Inversion of the transport of CO2 in the 1980s,
J. Geophys. Res., 104 , 18,555–18,581, 1999b.

Kaminski, T., P. Rayner, M. Heimann, and I. Enting, On aggregation errors in atmo-
spheric transport inversions, J. Geophys. Res., 106 , 4703–4715, 2001.

Knorr, W., and M. Heimann, Impact of drought stress and other factors on seasonal
land biosphere CO2 exchange studied through an atmospheric tracer transport model,
Tellus, Ser. B , 47 , 471–489, 1995.

16

Louis, J. F., A parametric model of vertical eddy fluxes in the atmosphere, Boundary
Layer Meteorol., 17 , 187–202, 1979.

Oram, A., and S. Talbott, Managing Projects with make, second ed., O’Reilly & Asso-
ciates, Inc., 981 Chestnut Street, Newton, MA 02164, USA, 1991, a unique text on
using make for software development.

Rostaing, N., S. Dalmas, and A. Galligo, Automatic differentiation in Odyssée, Tellus,
Ser. A, 45 , 558–568, 1993.

Russel, G. L., and J. A. Lerner, A new finite-differencing scheme for the tracer transport
equation, J. Appl. Meteorol., 20 , 1483–1498, 1981.

Talagrand, O., The use of adjoint equations in numerical modelling of the atmospheric
circulation, in Automatic Differentiation of Algorithms: Theory, Implementation, and
Application, edited by A. Griewank and G. F. Corliss, pp. 169–180, SIAM, Philadelphia,
Pa., 1991.

Tiedtke, M., A comprehensive mass flux scheme for cumulus parameterization in large-
scale models, Mon. Weather Rev., 117 , 1779–1800, 1989.

Turner, P., xmgr , 1998, unpublished, available from
http://plasma-gate.weizmann.ac.il/Xmgr.

17

7 Figures

Figure 1: The definition of the TM2 ”coarse grid”, taken from Heimann [1995]. The
numbers on the top and left border denote longitude and latitude in degrees, respectively.
The numbers on the bottom and right border denote the longitudinal (i) and latidudinal
(j) indices of the gridboxes. In the zonal direction the longitudes (in degree) φi of the
centers of the gridboxes are located at

φi = −180 + (i− 1)dx, i = 1, . . . , im

with a grid spacing of dx = 360
im

and where west longitudes are designated to be negative.

In the meridional direction the jm grid boxes have an extent (in degrees) of dy = 180
jm−1

.

They are spaced such that the latitudes (in degrees) θj of the grid box centers are located
at

θj = −90 + (j − 1)dy, j = 1, . . . , jm

(Southern latitudes are designated to be negative). The first and last grid box (indices

j = 1 and j = jm) are centered on the poles and have a meridional extent of dy
2
. These

polar boxes are not divided in the zonal direction and are referenced with zonal index
i = 1 (for indices j = 1 and j = jm the elements with zonal indices i > 1 are undefined.).

18

Forward mode

x x x
x x x
x x x
x x x

x x
x x
x x

x x x x x
x x x x x

x x x=
x x x
x x x
x x x

x x x x x
x x x x x
x x x x x

x x x=
x x x x x
x x x x x
x x x x x

x x x x x=

Reverse mode

x x x
x x x
x x x
x x x

x x
x x
x x

x x x x x
x x x x x

x x x x x=

x x x
x x
x x
x x

x x x x x
x x x x x=

x x x x x x x
x x x x x=

Figure 2: Example of forward and reverse modes illustrating the differences in the storage
requirements and in the number of operations: The same matrix product, whose result
has one row and five columns, is evaluated in forward mode, i.e., from right to left (top),
and in reverse mode, i.e., from left to right (bottom). In forward mode the matrices
holding the intermediate results have five columns, while in reverse mode they have one
row.

19

#==

Job to run tm2’s adjoint on cray,

in order to compute Jacobian matrix

#==

QSUB -eo
QSUB -r mcheck.job
QSUB -o mcheck_qsc_tst_mlo_87.log
QSUB -lT 100
QSUB -lM 4MW
#==
set variables
#==
#=============================
variables that are likely to be changed from run to run
#=============================
Define mode of run
mrev : comp. Jacobian
mcheck : check derivatives
and comp. Jacobian
setenv mode "mcheck"
choose for a short test run
by setting test "on"
setenv test "on"
set year of meteo data
setenv year 87
set type of Jacobian
TD: time dependent
QSC: quasi stat.
setenv mattype "QSC"
set file with station locations
setenv stafile "staloc_MLO.d"
set number of stations
setenv numsta "1"
set path for main directory
set adjhome="/pf/m/m211089/pfregen/tm2adj/tm2adj"
Define run-code
setenv run "${mode}_qsc_tst_mlo_${year}"
set working disc
setenv tmp "$MFHOME"
#=============================
set some control parameters for TM2
#=============================
for test perform short run
if ($test == "on") then
setenv nyear 0
setenv endday 13
setenv stayear $year
setenv new newday
else
setenv nyear 4
setenv endday 1
@ stayear = $year + 1 - $nyear
setenv new newmonth
endif
End of run
@ endyear = $stayear + $nyear

Figure 3: First part of the job control script mcheck qsc tst mlo 87.job, which checks
the Jacobian computed by a 12 day test run.

20

#=============================

set variables for the adjoint

#=============================
set no of time points p. station
setenv numtloc "12"
compute no of output variables
@ ncf = $numtloc * $numsta
#
Start and end of time window
for assimilation
setenv asstayear $year
@ asendyear = $asstayear + 1
#=============================
set pathes
#=============================
save directory for Jacobian
setenv matdir "$adjhome/jacobian"
Working directory
setenv workdir "$tmp/run_$run"
Directory for Station Locations
setenv stadir "$adjhome/station"
meteorological driving data
setenv datadir "$adjhome/meteo"
main programs from tamc utility
setenv prgdir "$adjhome/prgs"
source code of model
setenv moddir "$adjhome/model"
tamc library
setenv libtamcdir "$adjhome/libtamc"
i/o modules library
setenv libiodir "$adjhome/libio"
#==
prepare run
#==
create workdir
if (! -d $workdir) then
mkdir $workdir;
else
cd $workdir; rm -f *
endif
get station locations
cd $workdir ; ln -s $stadir/$stafile station.d
compile main programs
cd $prgdir; make all
make libraries

cd $libtamcdir; make all

cd $libiodir; make all

#==

make, compile, and link model

#==

cd ${moddir}; make all "MODPPFLAGS = -Wp"-F" -DNUMSTA=$numsta -DNCF=$ncf -D$mattype -DNEW=$new -DSTAYEAR=19$stayear" "MODEL = $workdir/mat_chk" \
"OPTI_FLAGS = ${prgdir}/prg${mode}.o" ; cd $workdir

Figure 4: Second part of the job control script mcheck qsc tst mlo 87.job, which
checks the Jacobian computed by a 12 day test run.

21

#==
run model
#==
echo "TM-Run: $run ‘date‘"
Jacobian is written for grads
in binary format of sun
assign -R
assign -N ieee -F null u:55
mat_chk <<endinput
&cfin
cfscal=1.
ncfdum=${ncf}
istafirst=1
&end
&adin
exp=’${mode}’
ntauinn=518400
idateicost=19${asstayear},1,1,0,0,0
idateecost=19${asendyear},1,1,0,0,0
&end

TM2 run ${run}

$datadir/wind_${year}.b
$datadir/sub_${year}.b
$moddir/plandf.d

&inputz

icalendo=3

istart=1
idatei=19${stayear},1,1,0,0,0
idatee=19${endyear},1,${endday},0,0,0
noindc=2
indc(1,1)=1,indc(2,1)=1,indc(3,1)=1
indc(1,2)=1,indc(2,2)=48,indc(3,2)=1
ncheck=0
fscale(1)=2.4167e6
ndiagp1=0
ndiagp2=0
nwrite=0
ndyn=14400
nconv=14400
nchem=14400
nsrce=14400
czeta=1.
czetak=1.
cdebug=.false.
&end
&gsource
totsrc=1.
&end

endinput
echo "TM model run completed --- ‘date‘"
#==
save output
#==
ln -s ${matdir} matdir
ln -s mat.ext matrix.ext

cd ${prgdir}; make "SPLIT = ${workdir}/msplit_${mattype}" "SPLITOBJ = msplit_${mattype}.o" ${workdir}/msplit_${mattype}; cd $workdir

program uses previous assign
to write in .gad format!
echo $year | msplit_${mattype}
echo "End of Job --- ‘date‘"
exit

Figure 5: Third part of the job control script mcheck qsc tst mlo 87.job, which checks
the Jacobian computed by a 12 day test run.

22

all: No action was taken.

f90 -ltamc -lio -L. -L.. /pf/m/m211089/pfregen/tm2adj/tm2adj_1.6a/prgs/prgmcheck.o -o /mf/m/m211089/run_mcheck_qsc_tst_mlo_87_a/mat_chk -Wp-F \
-DNUMSTA=1 -DNCF=12 -DQSC -DNEW=newday -DSTAYEAR=1987 mat_chk_ad.F mat_chk_cf.F

mat_chk_ad.F:

mat_chk_cf.F:

rm -f mat_chk_ad.o mat_chk_cf.o

TM-Run: mcheck_qsc_tst_mlo_87_a Sat Jul 8 21:48:34 MDT 2000
&CFIN CFSCAL = 1., NCFDUM = 12, ISTAFIRST = 1 /
&ADIN EXP = mch, NTAUINN = 518400, IDATEICOST = 1987, 2*1, 3*0, IDATEECOST = 1988, 2*1, 3*0 /

1
Global Atmospheric Tracer Model TM2, Version 8.5

Max-Planck-Institut fuer Meteorologie, D-2000 Hamburg 13

TM2 run mcheck_qsc_tst_mlo_87_a

8.5
--
reading massflux fields from file :
/pf/m/m211089/pfregen/tm2adj/tm2adj_1.6a/meteo/wind_87.b
reading subscal info fields from file :
/pf/m/m211089/pfregen/tm2adj/tm2adj_1.6a/meteo/sub_87.b
reading landfraction info field from file :
/pf/m/m211089/pfregen/tm2adj/tm2adj_1.6a/model/plandf.d
&inputz
icalendo=3
istart=1
idatei=1987,1,1,0,0,0
idatee=1987,1,13,0,0,0
noindc=2
indc(1,1)=1,indc(2,1)=1,indc(3,1)=1
indc(1,2)=1,indc(2,2)=48,indc(3,2)=1
ncheck=0
fscale(1)=2.4167e6
ndiagp1=0
ndiagp2=0
nwrite=0
ndyn=14400
nconv=14400
nchem=14400
nsrce=14400
czeta=1.

czetak=1.

cdebug=.false.

&end

1987-jan- 1 0: 0: 0 read massfluxes

&GSOURCE TOTSRC = 1. /

control parameters:

&INPUTZ ISTART = 1, NDYN = 14400, NCONV = 14400, NDIAG = 43200, NCHEM = 14400, NSRCE = 14400, NREAD = 43200, NWRITE = 0, NINST = 0
NCHECK = 0, NDIFF = 0, ICALENDO = 3, IYEAR0 = 1980, IDATEI = 1987, 2*1, 3*0, IDATEE = 1987, 1, 13, 3*0, IDATET = 1980, 2*1,

3*0, NDIAGP1 = 0, NDIAGP2 = 0, CZETA = 1., CZETAK = 1., LIMITS = F, DSCALE = 250000., FSCALE = 2416700., NOINDC = 2, INDC = 4*1, 48
1, 24*0, CDEBUG = F /
1987-jan- 1 0: 0: 0 model start up complete
station data of co2

obsinit : no header found on datafile obsdata

Read 1 station locations

from station definition file station.d

1987-jan- 1 0: 0: 0 read massfluxes

1987-jan- 1 0: 0: 0 read convinfo

1987-jan-13 0: 0: 0 model status saved on unit 3

Figure 6: First part of logfile mcheck.log created by the job control script
mcheck qsc tst mlo 87.job (see Figures 3, 4, and 5).

23

==
CHECK OF GRADIENTS

==

COMP CVAR DELTA X FC1-FC2/EPS GRAD(FC) REL DIFF y2 y1 y2-y1

1987-jan-13 0: 0: 0 model status saved on unit 3
1 507 0.100000E+00 0.115202E-12 0.115202E-12 0.100000E+01 0.115202E-13 0.000000E+00 0.115202E-13
2 507 0.100000E+00 0.224073E-12 0.224073E-12 0.100000E+01 0.224073E-13 0.000000E+00 0.224073E-13
3 507 0.100000E+00 0.325852E-12 0.325852E-12 0.100000E+01 0.325852E-13 0.000000E+00 0.325852E-13
4 507 0.100000E+00 0.418258E-12 0.418258E-12 0.100000E+01 0.418258E-13 0.000000E+00 0.418258E-13
5 507 0.100000E+00 0.398213E-12 0.398213E-12 0.100000E+01 0.398213E-13 0.000000E+00 0.398213E-13
6 507 0.100000E+00 0.524355E-12 0.524355E-12 0.100000E+01 0.524355E-13 0.000000E+00 0.524355E-13
7 507 0.100000E+00 0.816740E-12 0.816740E-12 0.100000E+01 0.816740E-13 0.000000E+00 0.816740E-13
8 507 0.100000E+00 0.911450E-12 0.911450E-12 0.100000E+01 0.911450E-13 0.000000E+00 0.911450E-13
9 507 0.100000E+00 0.882997E-12 0.882997E-12 0.100000E+01 0.882997E-13 0.000000E+00 0.882997E-13

10 507 0.100000E+00 0.780736E-12 0.780736E-12 0.100000E+01 0.780736E-13 0.000000E+00 0.780736E-13

11 507 0.100000E+00 0.242419E-12 0.242419E-12 0.100000E+01 0.242419E-13 0.000000E+00 0.242419E-13

12 507 0.100000E+00 0.792077E-13 0.792077E-13 0.100000E+01 0.792077E-14 0.000000E+00 0.792077E-14

--

program has terminated normally.

1987-jan-13 0: 0: 0 final time

no of timesteps: 216 cpu (s): 59.66 cpu/step: 0.27618349

--

STOP executed at line 3751 in Fortran routine ’EXITUS’
CPU: 59.693s, Wallclock: 125.618s, 3.0% of 16-CPU Machine
Memory HWM: 2561386, Stack HWM: 802810, Stack segment expansions: 288

TM model run completed --- Sat Jul 8 21:50:41 MDT 2000
f90 -ltamc -lio -L. -L.. -o /mf/m/m211089/run_mcheck_qsc_tst_mlo_87_a/msplit_QSC msplit_QSC.o

Enter year of met. data

Year: 87

On station definition file station.d are less than 18 station locations

Skipped the first 0 !

Read 1 station locations

from station definition file station.d
End of Job --- Sat Jul 8 21:50:55 MDT 2000
logout

Figure 7: Second part of logfile mcheck.log created by the job control script
mcheck qsc tst mlo 87.job (see Figures 3, 4, and 5).

24

#***
#
Makefile for TM2 Jacobian package
by T. Kaminski,
most pieces are copied from
TAMC utility by R. Giering
#***

RM = rm -f

#===
DIR = tm2jac_1.6
DOC = doc
MULT = mult
CONC = conc
FLUX = flux
JACOBIAN = jacobian
STATION = station
LIBIO = libio
CONVERT = convert
GRADS = libgrads
BIN = bin
CONFIG = config

#===
all : install

install: Make.host

(cd $(LIBIO); $(MAKE))

(cd $(MULT); $(MAKE))

check: install
(cd $(CONC); $(MAKE) check)

tar ../$(DIR).tar : Make.host scratch

$(RM) Make.host

cd .. ; tar -cf $(DIR).tar $(DIR)/Makefile $(DIR)/$(FLUX)/* \
$(DIR)/$(CONFIG)/* $(DIR)/$(JACOBIAN)/* \
$(DIR)/$(STATION)/* \
$(DIR)/$(MULT)/* $(DIR)/$(LIBIO)/* $(DIR)/$(CONC)/* \
$(DIR)/$(GRADS)/* $(DIR)/$(BIN)/* $(DIR)/$(DOC)/* \
$(DIR)/$(CONVERT)/* $(DIR)/CHANGES $(DIR)/README

tar.gz ../$(DIR).tar.gz : ../$(DIR).tar

../$(DIR).tar

tar.Z ../$(DIR).tar.Z : ../$(DIR).tar

../$(DIR).tar

Figure 8: First part of the Makefile for the main directory tm2jac.

25

#---------------------------------------
architecture depending settings
#---------------------------------------
Make.host:

@(ARCH=‘$(BIN)/getarch‘; \
if test -f config/Make.$${ARCH}; \
then \

echo "===================================="; \
echo " architecture = $${ARCH}"; \
echo "===================================="; \

else \

echo "===================================="; \

echo " architecture $${ARCH} not known"; \

echo " trying default"; \

echo "===================================="; \

cp config/Make.UNKNOWN config/Make.$${ARCH}; \

fi; \

cp config/Make.$${ARCH} Make.host; \
)

#---------------------------------------
clean up
#---------------------------------------
clean : Make.host

(cd $(MULT); $(MAKE) clean)

(cd $(BIN); $(MAKE) clean)

(cd $(DOC); $(MAKE) clean)

(cd $(CONFIG); $(MAKE) clean)

(cd $(LIBIO); $(MAKE) clean)

(cd $(CONVERT); $(MAKE) clean)

(cd $(CONC); $(MAKE) clean)

(cd $(FLUX); $(MAKE) clean)

(cd $(JACOBIAN); $(MAKE) clean)

(cd $(STATION); $(MAKE) clean)

(cd $(GRADS) ; $(MAKE) clean)

$(RM) *~ \#*\#

scratch : clean
(cd $(MULT); $(MAKE) scratch)
(cd $(BIN); $(MAKE) scratch)
(cd $(DOC); $(MAKE) scratch)
(cd $(CONFIG); $(MAKE) scratch)
(cd $(LIBIO); $(MAKE) scratch)
(cd $(CONVERT); $(MAKE) scratch)
(cd $(CONC); $(MAKE) scratch)
(cd $(FLUX); $(MAKE) scratch)
(cd $(JACOBIAN); $(MAKE) scratch)
(cd $(STATION); $(MAKE) scratch)
(cd $(GRADS) ; $(MAKE) scratch)
$(RM) Make.host

Figure 9: Second part of the Makefile for the main directory tm2jac.

26

...
! dimensions

integer nmonf,im,jm,lm,ng,nf
parameter (nmonf=12,im=36,jm=24,nf=im*jm*nmonf)
integer nmonc
parameter (nmonc=12)

! seasonal fluxes
real f(nf)

! transport matrix
real amatin(nf,nmonc)

...
! Calling sequence for Jacobian

call rtm(3,’jacobian.tm’,matin,im,jm,nmonc*nmonf)
! Calling sequence for flux field

call rtm(3,’fluxes.tm’,f,im,jm,nmonf)
...

C==
C T.K. 25.8.95
CCCADJ SUBROUTINE RTM = CONST

SUBROUTINE RTM(IUNIT,FILENAME,ARRAY,IM,JM,NMONTH)
C read file containing the array flux consisting of least
C nmonth fields of dimension im x jm
C==

C==
c declaration part
c==

implicit none

integer im,jm,nmonth,iunit
real array(im,jm,*)
character*(*) filename

integer idat,i,j,imonth

c==
c open source file
c==

open(unit=iunit,file=filename,status=’old’)

c==
c read arrays
c==

do imonth=1,nmonth
read(iunit,*) idat
read(iunit,*) ((array(i,j,imonth),i=1,im),j=1,jm)
if(idat.eq.imonth) then

c write(*,*) ’rtm: ’,idat,’th month read’
else

write(*,*)’error in rtm: reading ’,filename,’ idat = ’,idat,
. ’ is not equal to imonth= ’,imonth

stop
endif

enddo

close(iunit)
end

Figure 10: Subroutine rtm.F that reads the .tm files of Jacobians and flux fields together
with an example of the calling sequence.

27

...
!iunitg: channel connected to gadfile

integer iunitg
!im,jm: number of lons and lats
!lm: number of vertical levels
!nt: number of time steps
!nv: number of gridvariables

integer im,jm,lm,nt,nv
real field(im,jm,lm,nv,nt)

! gadfile is "fname.gad"
character*50 gadfile

...
call wgad(iunitg,gadfile,field,im*jm*lm*nv*nt)

...
C==
C T.K. 31.7.95
CCCADJ SUBROUTINE WGAD = CONST

SUBROUTINE WGAD(IUNIT,FILENAME,FIELD,NDIMTOT)

C==

C==
c declaration part
c==

implicit none

integer ndimtot,iunit
real field(ndimtot)
character*(*) filename

c==
c open files
c==

open(iunit,file=filename,form=’unformatted’,
& access=’direct’,recl=4*ndimtot)

C==

c writing

c==
write(iunit,rec=1) field

close(iunit)
end

Figure 11: Subroutine wgad.F that writes the .gad files of Jacobians, concentrations and
flux fields together with an example of the calling sequence. Note the order of dimensions:
longitudes, latitudes, levels, variables, time. The range within the particular dimensions
is defined in the corresponding .ctl file. Look in graphics.ps for a descriptor file of a
single flux field in the surface layer of the TM2 grid (see Figure 1), of which the dimension
in the zonal direction is 36, in the meridional one 24, and there are 12 months.

28

Figure 12: Subdirectory tree of the directory tm2jac (see section 4).

29

ISSN 1619-2257

