
The PINGO1 package

The documention of  a software package of the DKRZ (Bundesstraße 55, 20146
Hamburg, Germany) which allows for data processing on workstations with SIMPLE,

EXTRA, SERVICE, LOLA, and GRIB files.

by Jürgen Waszkewitz, Peter Lenzen, and Nathan Gillet

1. (Procedural INterface for GRIB formatted Objects)



PAGE 4

DISCLAIMER OF WARRANTY

Nor the authors nor the DKRZ make warranties,
expressed or implied, that the programs and data con-
tained in the software package are free of error, or are
consistent with any particular standard of merchanta-
bility, or that they will meet your requirements for any
particular application. They should not be relied on
for solving a problem whose incorrect solution could
result in injury to a person or loss of property. If you
do use the programs or data in such a manner, it is on
your own risk. The authors and the DKRZ disclaim all
liability for direct or consequential damages from
your use of the programs and data.



PAGE 5

TABLE  OF  CONTENTS:
1. Introduction 7

2. Getting started 8
2.1 File Formats 8

2.2 The calling sequence 12

2.3 Missing values 14

2.4 The “Filling up” of input files and “enlarging” of input records 16

3. Advanced features 18
3.1 Protocol file 18

3.2 Combining different functions 19

3.3 Advanced standard input 21

3.4 Not required output files 22

3.5 The use of named pipes 23

3.6 Grid description files 24

3.7 The concept of area weights 27

3.8 How to convert files into SIMPLE, EXTRA, SERVICE, LOLA, or GRIB? 30

3.9 How to transfer files to other computers? 32

3.10 Computations for each level separately 34

3.11 About everlasting zombies, parent killing children, and other unimportant things 35

4. The functions 38
4.1 Information 38

4.2 Formatted input and output 44

4.3 Converting the format 48

4.4 Generation of files 49

4.5 Manipulating the header 52

4.6 Manipulating the field 54

4.7 Manipulating the sequence of records 59

4.8 Selection 62

4.9 Missing values 68

4.10 Sorting and ranking 71

4.11 Arithmetic 72

4.12 Maximum and Minimum 76

4.13 Mathematical functions 80

4.14 Comparisons and Logic 84

4.15 Conditions 89

4.16 Geometry 91

4.17 Means and averages 96

4.18 Variances, correlations, and co. 109

4.19 Regression 120

4.20 Tests, confidence intervals, and co. 123

4.21 Empirical Orthogonal Functions 152

4.22 Fourier and spectra 157

4.23 Interpolation 161

4.24 Classes 165

5. References 171

6. List of Functions 172

7. Index of Functions 178



PAGE 6



 PAGE 7

1.  Introduction

The PINGO1 package provides many functions for standard post-processing of climate

data sets on workstations. A large range of computations from basic arithmetic over

statistics to spectral analysis and empirical orthogonal functions can very simply be

done by this package. This package, which is a totally new development of the DKRZ

in Hamburg (Germany), is designed for the operating system UNIX.

Contrary to many other existing tools which are related to only one file format this

package accept 5 different formats, namely SIMPLE, EXTRA, SERVICE, LOLA, and

GRIB. These formats are described in Section 2.1 “File Formats” on page 8. However,

the user has not to care about the different input file formats, the program is able to

decide alone which format is on. The user has only to decide on the output file format.

Other advantages of the PINGO package are:

• Missing values are supported. If a value other than the default is desired, the user

just has to set an environment variable.

• This program can write a complete protocol of all calls.

• A data set can easily be processed by several functions, without storing the interim

results in files. (No disk I/O.)

• Clear error messages. If file I/O leads to an error, the reason is printed, e.g. “No

space left on device”.

• No “silent waiting”. If a function needs information from standard input, the pro-

gram always asks the user to type in the desired information, which is then acknowl-

edged with an “OK” message.

• No “seeks” on the input and output files, so they can be named pipes.

• It is very easy for the author to add new functions. An increasingly large range of

functions will hence become available to the user.

1. (Procedural INterface for GRIB formatted Objects)



 PAGE 8

2.  Getting started

2.1  File Formats

Every input and output file is made up of a series of records. Each record of an input

file must be in SIMPLE, EXTRA, SERVICE, LOLA, or GRIB format. The formats  are

described further down. Every format is subdivided into different accuracies: 4 bytes or

8 bytes per number in the SIMPLE, EXTRA, SERVICE, and LOLA format and 1, 2, 3,

4, 5, 6, 7, or 8 bytes per number in the GRIB format. (Constant GRIB fields always

have an accuracy of 4 bytes.)

GRIB is a WMO standard for meteorological data sets and is described in [1]. Even

though no details of the GRIB format will be discussed here, two points should be

mentioned: Firstly GRIB is completely self-describing. This means that every GRIB

record contains not only information of the date, time, code, level, centre-ID, experi-

ment-ID, etc., but also of the assigned grid, especially of its longitudes and latitudes.

Secondly it compresses the data set (with lost of information), which is normally done

by choosing an accuracy of 2 bytes per number.

The disadvantage of the GRIB format is its complexity: Because all meteorological

data sets can be described by GRIB, it is very difficult to read and to write it. So if the

user wants to write an own FORTRAN program to process the records, the GRIB for-

mat should be changed into a very simply readable format. For this purpose two for-

mats were developed by the Meteorologisches Institut der Universität Hamburg. The

first format developed there was the EXTRA format which is described later on. Its

advantage: It can very easily be read and written by a FORTAN program. But caused

by its simplicity it contains only a few describing variables: The date, code, level, and

field size. It does not contain any grid description.

Because it was felt by the scientists of the Meteorologisches Institut der Universität

Hamburg that this is too less, they created a new format called SERVICE. This format

contains beside the time variable a little description of the grid: The number of longi-

tudes and of latitudes.

Because the author of this package felt that in some situations, especially when

processing regions instead of the whole globe, it would be nice to have an easy format



 PAGE 9

containing also a complete grid description, he created the LOLA format. Since there is

a wide range of possible grids he decided to restrict the format to longitude/latitude

grids. The name LOLA stands for LOngitude/LAtitude.

The author also created the SIMPLE format which is free of any self describing. Its

purpose is the “misuse” of this package for other, not meteorological, purposes.

Every SIMPLE, EXTRA, SERVICE, or LOLA record is either real or complex

(whereas a GRIB record is always real). They all consist of a header containing the

description part and of a field.

A SIMPLE record can be read in a fortran program by

      READ(10) NSIZE
      READ(10) (FIELD(ISIZE),ISIZE=1,NSIZE)

An EXTRA record can be read in a fortran program by

      READ(10) IDATE,ICODE,ILEVEL,NSIZE
      READ(10) (FIELD(ISIZE),ISIZE=1,NSIZE)

A SERVICE record can be read by

      READ(10) ICODE,ILEVEL,IDATE,ITIME,NLON,NLAT,IDISP1,IDISP2
      READ(10) ((FIELD(ILON,ILAT),ILON=1,NLON),ILAT=1,NLAT)

A LOLA record can be read by

      READ(10) IDATE,ITIME,ICODE,ILEVEL,NLON,NLAT,LLON,LLAT,IDISP1,IDISP2
      READ(10) (XLON(ILON),ILON=1,LLON)
      READ(10) (XLAT(ILAT),ILAT=1,LLAT)
      READ(10) ((FIELD(ILON,ILAT),ILON=1,NLON),ILAT=1,NLAT)

If the accuracy is 4 bytes per number, the variables should be declared respectively as

      INTEGER*4 NSIZE
      REAL*4 FIELD(MSIZE)

and

      INTEGER*4 IDATE,ICODE,ILEVEL,NSIZE
      REAL*4 FIELD(MSIZE)

and

      INTEGER*4 ICODE,ILEVEL,IDATE,ITIME,NLON,NLAT,IDISP1,IDISP2
      REAL*4 FIELD(MSIZE)



 PAGE 10

and

      INTEGER*4 IDATE,ITIME,ICODE,ILEVEL,NLON,NLAT,LLON,LLAT,IDISP1,IDISP2
      REAL*4 XLON(MLON), XLAT(MLAT), FIELD(MSIZE)

with NSIZE ≤ MSIZE, NLON ≤ MLON, NLAT ≤ MLAT. If the record is complex, then the variables

must be declared as COMPLEX*8 instead of REAL*4.

In general, on the SUN stations INTEGER is the same as INTEGER*4, REAL is the same as

REAL*4, and COMPLEX is the same as COMPLEX*8.

If the accuracy is 8 bytes per number, the variables should be declared as INTEGER*8

instead of INTEGER*4, REAL*8 instead of REAL*4, and COMPLEX*16 instead of COMPLEX*8. Nor-

mally on a sun station a DOUBLE PRECISION is the same size as a REAL*8, and a DOUBLE

COMPLEX is the same size as a COMPLEX*16. (If this is the case, DOUBLE PRECISION and DOUBLE

COMPLEX should be used to let the compiler chose the optimal routine in the case of

generic functions.)

The meaning of the variables are:

IDATE The date as YYYYMMDD with Y=year, M=month or season, D=Day. The months
and seasons are coded as 01=January, 02=February, ... , 12=December, 13=season
DJF (December,January,February), 14=season MAM (March,April,May), 15=season
JJA (June,July,August), 15=season SON (September,October,November)). e.g.
1491230 for the 30th of December of year 149, 1501300 for the northern hemispheric
winter beginning December of year 149 and ending February of year 150. (EXTRA,
SERVICE, LOLA)

ITIME The time as HHMM with H=hour and M=minute. (SERVICE, LOLA)

ICODE The code as described in the DKRZ Technical Report No. 6. (EXTRA, SERVICE,
LOLA)

ILEVEL The level. (This can be model-level (hybrid-level) or pressure level.) (EXTRA,
SERVICE, LOLA)

NSIZE The size of the data file. (SIMPLE,EXTRA)

NLON The number of longitudes. (SERVICE,LOLA)

NLAT The number of latitudes. (SERVICE,LOLA)

LLON (=”listed longitudes”) The size of the longitude description record. Up to three differ-
ent values are possible. LLON=NLON means all single longitudes are given, LLON=2
means longitudes are equidistantly distributed and only the first two ones are given,
LLON=0 means longitudes are the same as in the record before. If a program needs the
longitudes, in all three cases the code

      IF( LLON.EQ.2 )THEN
        DO I = 3,NLON
          XLON(I) = XLON(1) + (I-1) * (XLON(2)-XLON(1))
        ENDDO
      ENDIF

constructs the array XLON. (LOLA)



 PAGE 11

Functions which require the fields demand the same field size of all simultaneously

read input records. Many of these functions allow fields of different sizes in series in

one file, e.g. if they represent different regions of the globe. However, some functions

cannot work with such input files: They “think” of an input file as containing different

realisations of the same spatial field. An example of such a function is the one which

computes the mean over all time steps. These functions require the same field size over

all records, and have no meaning when applied to files whose records represent several

different regions of the globe. A call of one of these functions in such cases would

result in an error message.

The field size 1 is an exception and will be discussed in Section 2.4 “The “Filling up”

of input files and “enlarging” of input records” on page 16.

There is no rule governing the sequence of records in a file, but it is convention to order

the records by date. Records for the same date are then ordered in such a way that all

records of the same code are immediately adjacent, and all records of the same date

and code are ordered by ascending or descending level.

LLAT (“listed latitudes”) The size of the latitude description record. Up to three different
values are possible. LLAT=NLAT means all single latitudes are given, LLAT=2 means lat-
itudes are equidistantly distributed and only the first two ones are given, LLAT=0
means latitudes are the same as in the record before. If a program needs the latitudes,
use program code analogous to the one given at the explanation of LLON to construct
the array XLAT. (LOLA)

XLON The array of longitudes. (LOLA)

XLAT The array of latitudes. (LOLA)

FIELD The field. (EXTRA, SERVICE, LOLA)

IDISP1 (“Dispo #1”) For the users disposal. Can be used for example to save a centre ID or
what ever the user likes. (SERVICE,LOLA)

IDISP2 (“Dispo #2”) For the users disposal. Can be used to save an experiment number or
what ever the user likes. (SERVICE,LOLA)



 PAGE 12

2.2  The calling sequence

The program can be called by 24 different names. The name used determines the out-

put file format and the accuracy:

The PURE format has no headers and no FORTRAN blocking. PURE files are just a

series of REAL (or COMPLEX) numbers. They cannot be used as input files for this program,

but are useful for plotting software, e.g. grads, pvwave, etc.

If the last character of the program name is a number, it determines the accuracy of the

output file in bytes. If no accuracy is explicitly demanded by the user, the program

chooses for every record the greatest accuracy of all corresponding input records. (If no

input file is given, the smallest accuracy available for this format is used.)

The first argument after the program name must be a function name. The different

functions are introduced later.

After the function name all input file names must be given, followed by all output file

names.

Example: To add the two files ifile1 and ifile2 and store the result in ofile just

type:

Used name Output file format

pure
pure4
pure8

The output format is PURE
(IEEE format)

smp
smp4
smp8

The output format is SIMPLE

ext
ext4
ext8

The output format is EXTRA

srv
srv4
srv8

The output format is SERVICE

lola

lola4

lola8

The output format is LOLA

grb
grb1
grb2
grb3
grb4
grb5
grb6
grb7
grb8

The output format is GRIB



 PAGE 13

ext add ifile1 ifile2 ofile

The program then does the addition, and after finishing prints something like

ext add: Processed 4 records.

Example: To get information on the contents of file ifile just type:

ext info ifile

The program now prints something like

  REC :    DATE COD LEVEL      SIZE      MINIMUM       MEAN    MAXIMUM :   MISS
    1 :    1300   1     1         3 :  1.000e+00  2.667e+00  4.000e+00 :      0
    2 :    1400   1     1         3 :  3.000e+00  3.667e+00  4.000e+00 :      0
    3 :    1500   1     1         3 :  4.000e+00  5.000e+00  6.000e+00 :      0
    4 :    1600   1     1         3 :  7.000e+00  8.000e+00  9.000e+00 :      0
ext info: Processed 4 records.

Because the function info has no output file, the name of the program is ignored, i.e.

srv info or grb info are absolutely identical to ext info.

Example: To subtract the constant 273.15 from file ifile and store the result in

ofile just type:

ext subc ifile ofile

Then the program prints (to standard error):

ext subc: Enter constant!
ext subc>

and the user has to type in the constant and press return. Then the program prints (to

standard error)

OK

does the calculations and prints (to standard error)

ext: Processed 4 records.

or whatever the number of records in the input file was.

Some remarks to GRIB records: There are three different kinds of functions: Those

with the lowest requirement do not need the array but only the header, examples are

selcode for selecting a code or chdate for changing the date. If no change in the output



 PAGE 14

format is desired, i.e. the program is called by the name “grb”, then these functions

(should) except all GRIB records and do not decompress the field. Functions of the

second kind need the field, like add to add two record, or mean to compute the mean over

all records. They cannot read all GRIB records, especially not records containing

spherical harmonics and some kinds of data packing. And the most demanding func-

tions need not only the field but also the grid information, like meanr to compute area

weighted means of the records. They can read a smaller subset of all possible GRIB

records only compared to the previous functions.

2.3  Missing values

In GRIB records the missing values are stored via a bit map in the GRIB header, so no

special value acts as a missing value.

In SIMPLE, EXTRA, SERVICE, and LOLA records there are two different missing

values: The value 9.E9 is used for records in 4-byte type, and 9.E99 is used for records

in 8-byte type. To change these values, just set the environment variables MISSVAL4 or

MISSVAL8. If you do not know which type you are using, you can set both values via

the environment variable MISSVAL. (But remember, if your missing value is too big to

be stored in a REAL*4, e.g. 9.E99, only the value for the 8-byte type is changed.) For

example:

MISSVAL=9999
export

in a Bourne-Shell and

setenv MISSVAL 9999

in a C-Shell.

The use of the missing value is shown in the following tables, where for each operation

one table is printed. The operations are applied to arbitrarily number a, b, the special

case 0, and the missing value miss. Grey fields are of particular interest. For example

the table named “addition” shows that the sum of an arbitrarily number a and the miss-



 PAGE 15

ing value is the missing value, and the table named “multiplication” shows that 0 mul-

tiplied by the missing value results in 0.

The handling of missing values by the operations “minimum” and “maximum” may be

surprising, but it turned out that the definition given here is more related to what is

expected in practice. Mathematical functions (e.g. log, sqrt, etc.) return the missing

value if

• An argument is the missing value

or

• An argument is out of range

All statistics functions ignore missing values, treating them as not belonging to the

sample, with the side-effect of a reduced sample size. An artificial distinction is made

between the notions mean and average. The mean is regarded as a statistics function,

whereas the average is found simply by adding the sample members and dividing the

addition b miss

a a+b miss

miss miss miss

subtraction b miss

a a-b miss

miss miss miss

multiplication b 0 miss

a a*b 0 miss

0 0 0 0

miss miss 0 miss

division b,b≠0 0 miss

a a/b miss miss

0 0 miss miss

miss miss miss miss

maximum b miss

a max(a,b) a

miss b miss

minimum b miss

a min(a,b) a

miss b miss



 PAGE 16

result by the sample size. For example, the mean of 1, 2, miss, and 3 is (1+2+3)/3=2,

whereas the average is (1+2+miss+3)/4=miss/4=miss. If there are no missing values in

the sample, the average and mean are identical.

2.4  The “Filling up” of input files and “enlarging” of input records

If the called function needs more records from an input file than are available, the func-

tion uses a copy of the last record read as often as necessary. This “filling up” stops

when all the input files are at end of file. The advantage of this “filling up” is that a file

containing a single record behaves like a constant array. Let, for example, two input

files, ifile1 and ifile2, be given. Let ifile1 consists of 12 records and ifile2 of 1

record. Let us think of ifile1 as monthly means and ifile2 as the annual mean. To sub-

tract the annual mean from every monthly mean and to store the result in ofile, only

the following must be typed:

ext sub ifile1 ifile2 ofile

That’s all! The program prints on standard error the message:

ext sub: Filling up file ifile2 by copying the last record.

This last record is the only record, in this case. A graphical demonstration can be found

in Figure 1 on page 17 (Advanced users can read the hints for function null (page 50)

to suppress “filling up”.).

The other automatic adaptation of input records is for fields of size 1 if the chosen

function requires the field. These records are “enlarged” to the size of the other input

fields which are not 1. Remember: They must all have the same size. Let, for example,

the two input files ifile1 and ifile2 be given. Let ifile1 consist of records of field size

2048 and ifile2 of records of field size 1. Let us think of ifile1 as a global field and of

ifile2 as its global average. To subtract the global average from the spatial field and to

store the result in ofile, only the following must be typed:

ext sub ifile1 ifile2 ofile

The program prints on standard error the message:

ext sub: Enlarging record(s) in file ifile2 by copying the one existing
element.



 PAGE 17

Even though this “enlarging” is done again for each record, the warning is only printed

once, to prevent an overfull screen. A graphical demonstration can be found in Figure 2

on page 17.

FIGURE 1. “Filling up” a file by copying the last record.

FIGURE 2. “Enlarging” a record by copying the one existing element.

REC  1

ifile1 ifile2

REC  2

REC  3

REC  4

REC  5

REC  6

REC  7

REC  8

REC  9

REC 10

REC 11

REC 12

REC  1

„

„

„

„

„

„

„

„

„

„

„

REC  1

ofile

REC  2

REC  3

REC  4

REC  5

REC  6

REC  7

REC  8

REC  9

REC 10

REC 11

REC 12

ifile2 is filled up to a length of 12

records by copying the last record,

Elem. 1

ifile2

Elem. 1

ifile1

Elem. 2 Elem. 3 Elem. 4 Elem. n

>> >> >> ... >>

Elem. 1

ofile

Elem. 2 Elem. 3 Elem. 4 Elem. n

...

...

ifile2 is enlarged to

a size of n by copy-

ing the one existing



 PAGE 18

3.  Advanced features

3.1  Protocol file

It is possible to make the program write a protocol. To do this, the environment varia-

ble PROTOCOL must be set to a file name. For example:

PROTOCOL=/mf/k/k204099/protocol
export PROTOCOL

in a Bourne-Shell and

setenv PROTOCOL /mf/k/k204099/protocol

in a C-Shell. Every time the program is called and executed (assuming the syntax is

correct, and the function exists) the protocol is taken and appended to this file. Always

give the complete file name, including the path, not just a file name like “protocol”,

otherwise the protocol will always be written in the current directory.

The protocol is an ascii file and can be revisited when the user needs to know of what

he actually computed.

An entry in the protocol file looks like this:

    (20931) 95-12-06 15:37:35 started in /mf/k/k204099/datas:
ext add ifile1 ifile2 ofile
    (20931) 95-12-06 15:37:36 Processed 4 records.
    (20940) 95-12-06 15:43:32 started in /mf/k/k204099/datas:
ext info ifile
    (20940) 95-12-06 15:43:33 Processed 4 records.
    (21720) 95-12-06 15:53:25 started in /mf/k/k204099/datas:
ext subc ifile ofile
    (21720) 95-12-06 15:55:16 input values: 273.15
    (21720) 95-12-06 15:55:16 Processed 4 records.
    (22003) 95-12-06 16:02:35 started in /mf/k/k204099/datas:
pure copy ifile ofile
    (22003) 95-12-06 16:02:36 Processed 4 records.

The numbers in the brackets are the process ID’s. They are of interest in situations

where the user is doing several calculations at the same time, so that it is clear which

message belongs to which program call. The process ID is followed by the date, time

and action that is being recorded.

If values other than the default missing values are used, this is also written into the pro-

tocol file.



 PAGE 19

A user who wants to kill a process by using the unix command kill should not use the

-9 option to enable the process to write its termination note into the protocol file.

3.2  Combining different functions

If a computation must be done in several steps, it is not necessary to save all the interim

results on disk between the different calls. Furthermore, on a multiple processor

machine it is possible to do the computations in parallel and allow the processes to

communicate by internal pipes. The calling sequence is straight forward.

First Example: To compute mean after selecting code 167 of ifile and store the result

in ofile, the user could type

The way to combine the functions selcode, for selecting a code, and yearmeans, for com-

puting the annual means, is as follows:

The program would write

ext mean: Started child process “ext(2) selcode ifile (pipe 2.1)”
ext(2) selcode: Enter code!
ext(2) selcode>

The user has now to type in the code number 167 and the computer prints

OK
ext(2) selcode: Processed 1000 records.
ext mean: Processed 100 records.

What happened? The program created a child process which behaves like the com-

mand ext selcode ifile (pipe 2.1). The (2) in ext(2) which was printed on the screen

is the position of the -selcode in the argument list of the calling sequence and is needed

to easily identify the child in situations where there is more than one child. (pipe 2.1) is

the output file of the selcode function and is really an internal pipe. The other end of

this pipe acts as the input file of the function mean.

ext selcode ifile temp
ext mean temp ofile
rm temp

BAD EXAMPLE !

ext mean -selcode ifile ofile PREFERRED SOLUTION!



 PAGE 20

The general rule for combining functions is as follows: If, instead of an input file name,

there is something beginning with “-“, the program assumes that this “-“ is immedi-

ately followed by a function name, which itself is followed by its input file names, all

separated by blanks. This function is started as a child process, and every output file of

this child is substituted for an input file of the parent function.

It is possible to combine functions to an arbitrary depth of levels: Let us assume that in

the first example only the mean of the years 1950 to 1979 is to be subtracted, not the

mean over all records of the desired code. Before computing the mean, the records con-

taining a year between 1950 and 1979 must be selected by the function selyear. The

combined call could be

ext mean -selyear -selcode ifile ofile

The program then prints something like

ext mean: Started child process “ext(2) selyear -selcode ifile (pipe 2.1)”.
ext(2) selyear: Started child process “ext(3) selcode ifile (pipe 3.1)”.
ext(3) selcode>

The user has now to type in the code number 167 and the computer prints

OK
ext(2) selyear: Enter start year and end year!
ext(2) selyear>

The user has now to type in 1950 1979 and the computer prints

ext(3) selcode: Processed 1000 records.
ext(2) selyear: Processed 100 records.
ext mean: Processed 30 records.

The last example shows how complex formulae can be calculated in one call. As a fur-

ther example, let us assume that the correlation of two time series is to be estimated

without assuming normally distributed samples. The formula is

(1)

where  is the length of the time series and  is the range of the -th observation of

time series , for example for observations  the

assigned ranks are , because 2.3 is the greatest number, 4.4 the

1
n3 n–( ) 6⁄

---------------------------- Ri
1( ) Ri

2( )–( ) 2

i 1=

n

∑

n Ri
j( ) i

j 1 2,= 4.4 5.1 5.6 2.3 5.1 7.8, , , , ,( )

2 3.5 5 1 3.5 6, , , , ,( )



 PAGE 21

2nd greatest, 5.1 the 3rd and 4th greatest number, etc. If the time series are stored in the

files ifile1 and ifile2 and if the result should be stored in ofile, then the call of the

functions could be

ext divc -sum -sqr -sub -rang ifile1 -rang ifile2 ofile

(This kind of notation is similar to what is called “Polish notation”.) The function divc

(division by a constant) will ask for a constant and the value for  should be

typed in. The user then has to type in the value of . Five child processes are

started, the dependencies of them are indicated in the following table.

3.3  Advanced standard input

In some situations, the user might wish to type the standard input in at the command

line, before calling the function. This can usually be done quite easily, by using “<<“ to

redirect the standard input to the shell

ext info -subc ifile <<eoi
273.15
eoi

Or the user can redirect the standard input from a file, which is sensible for functions

requiring a lot of standard input. This is done using the “<“ sign, as is shown below:

ext info -subc ifile < input

The file input must then contain the numbers. N.B. Anything written after an initial

number or any line which does not start with a number is treated as a comment.

Pos: 1 2 3 4 5 6 7 8 9

ext divc -sum -sqr -sub -rang ifile
1

-rang ifile
2

ofile

-rang ifile
1

-rang ifile
2

(pipe 5.1) (pipe 7.1)

-sub (pipe 5.1) (pipe 7.1)

(pipe 4.1)

-sqr (pipe 4.1)

(pipe 3.1)

-sum (pipe 3.1)

(pipe 2.1)

divc (pipe 2.1) ofile

n3 n–( ) 6⁄

n3 n–( ) 6⁄



 PAGE 22

However, if several processes are started from within one command line, this proce-

dure does not work: It is not clear which of the processes involved is picking up the

redirected standard input. The following two command lines are examples of such situ-

ations:

Both processes, ext and more, are picking up data from the standard input channel.

ext sub -selrec ifile1 -selrec ifile2 ofile

In this example, where selected records of ifile1 and ifile2 are to be subtracted, it is

unpredictable which child process (ext(2) selrec ifile1 (pipe 2.1) or ext(4) selrec

ifile2 (pipe 4.1)) will be the first to ask for the start and end record numbers.

Hence, a better tool than “<<“ is needed for redirecting the standard input. This tool

exists, and is very simple to use: Just type the numbers required by each function

directly after the function name, dividing them by commas, e.g.

and

If too few numbers are given, the function switches from reading the command line

numbers to reading the standard input. Excess given numbers are ignored.

3.4  Not required output files

Some functions produce more than one output file. If the user is not interested in all of

them, he might type “-” instead of an output file name. The “-” has the same effect as

the file name /dev/null, except that it saves some computation time.

For example, if the user wants to split the file ifile seasonally and store the result in the

files ofile.djf.ext, ofile.mam.ext, ofile.jja.ext, ofile.son.ext he can use the function

splitseas:

ext info -subc ifile | more BAD EXAMPLE !

ext info -subc,273.15 ifile | more PREFERRED SOLUTION!

ext sub -selrec,1,12 ifile1 -selrec,13,24 ifile2 ofile

PREFERRED SOLUTION!



 PAGE 23

ext splitseas ifile ofile.djf.ext ofile.mam.ext ofile.jja.ext ofile.son.ext

But if he is only interested in winter and summer, he could type

ext splitseas ofile.dfj.ext - ofile.jja.ext -

If not all of the output files of a function which is started as a child process should be

used by the parent function (see Section 3.2 “Combining different functions” on

page 19), put the functions selfile<m>of<n> (page 67) resp. selfile<l>and<m>of<n>

(page 67) resp. selfile<k>and<l>and<m>of<n> (page 68) between the pipes.

3.5  The use of named pipes

In some situations, the user may wish to have named pipes as input or output files. If,

for example, he wants to create two pipes with the names pipe1 and pipe2, he just has

to type

mknod pipe1 p
mknod pipe2 p

mknod is a unix command to create special files like pipes. If the user now prints a

“long” file list by typing ls -l, he sees the following entries in the list of files:

prw-rw-rw-  1 k204099         0 Jan 10 15:25 pipe1
prw-rw-rw-  1 k204099         0 Jan 10 15:25 pipe2

The “p” at the left indicates a pipe.

To prevent disturbances by other users, he should take away the read and write permis-

sion of the group and others with the unix command chmod go-rw pipe[12].

Once the pipes are created they can be used as often as desired, BUT BEFORE

USING A PIPE A SECOND TIME, IT SHOULD BE ENSURED THAT THERE

ARE NO PROCESSES STILL WRITING TO OR READING FROM IT!

Because at the same time there should at most one process read from the pipe and at

most one process write on the pipe. Otherwise one get typically “ERROR! File

<pipename> has wrong format!” The easiest way to kill all processes writing to or

reading from a pipe is to remove the pipe and create it again.



 PAGE 24

The reading process and the writing process are synchronizing themselves so that the

reading process reads from the pipe with the same speed than the writing process

writes on it. But if no process is writing on the pipe, a reading process would sleep (but

not stop!), and if no process is reading from the pipe, a writing process would sleep

(and again: not stop!).

Imagine now that the user has to compute the monthly means of the daily minimum

temperature, given a number of 12-hour data sets. Imagine further that the input data

file is too large to be stored on his machine, but is available on another machine called

schauer, and that the result is to be stored on a machine called local. Provided the user

has a .netrc file in his home-directory with the login and password of the machine

schauer, he could type

ftp schauer <<eoi &
get ifile pipe1
quit
eoi
ext monmeans -daymins pipe1 pipe2 &
rcp pipe2 local:ofile &
wait

It is important to let all the processes involved run concurrently, but the calling

sequence is unimportant.

And again, because it is a typical source of error:

The easiest way to ensure this is to remove the pipe and create it again.

3.6  Grid description files

In some situations it is necessary to give a description of a grid. These situations are

• the change of a format from the SIMPLE, EXTRA, or SERVICE format to the

LOLA format as described in Section 3.8 “How to convert files into SIMPLE,

EXTRA, SERVICE, LOLA, or GRIB?” on page 30

EXCEPT FOR THE TWO DESIRED PROCESSES THERE

MUST BE NO OTHER SLEEPING OR ACTIVE PROCESSES



 PAGE 25

• functions that need the grid information, for example grads (page 40) to produce a

grads description file, sellonlatbox (page 67) to select a box in longitude and latitude

coordinates, or weight0 (page 49) to construct a weight files as described in

Section 3.7 “The concept of area weights” on page 27

• the function interpolate (page 161) which interpolate fields from one grid to

another.

A grid description file is an ASCII formatted file. The first and second entries in these

files are the numbers of longitudes and latitudes of the grid, followed by a description

of the longitudes and then followed by a description of the latitudes. Hence only longi-

tude/latitude grids can be described in a grid description file. The description of the

longitudes (latitudes) starts with the number of “listed longitudes”, that is the number 2

if the longitudes (latitudes) are equidistant, or again the total number of longitudes (lat-

itudes). In the case of equidistance the first 2 longitudes (latitudes) are listed, in the

other case all longitudes (latitudes) are listed. Longitudes are always listed from west

to east, latitudes may be in descending or ascending order.

For some standard resolutions there are existing “ready to use” grid description files.

They can be found in the directory grids, a subdirectory of the directory containing the

executable program. Before continuing, it is best to set an environment variable like

GRIDS with this directory name. Use the command

which ext

to find the directory of the executable program.

In this directory, henceforth referred to as $GRIDS, are some useful files. All their names

begin with a grid name. The grid names are t21, t42, t106, r72x36, r72x37, r144x73,

r180x90, r180x91, r360x180, r360x181, r720x360, r720x361, where t<n> indicates a Gaussian

grid and r<m>x<n> a regular grid with <m> longitudes and <n> latitudes. There are 2

files per grid; for example, for the T21 grid there are the files

t21.grid.asc
t21.weights.lola

The first one is the grid description file of a T21 grid. The second is a weight file.

Weight files are explained in the Section 3.7 “The concept of area weights” on page 27.



 PAGE 26

The contents of t21.grid.asc are

Grid Description File
(Comments start at non digit characters and end at end of line)
First part: The dimensions.
64 32 = Number of longitudes and latitudes
Second part: The listed longitudes.
2 means equidistant longitudes
0.000000 5.625000 = Most western and second most western longitude
Third part: The listed latitudes.
32 means all 32 latitudes are given in the following list:
 85.761  80.269  74.745  69.213  63.679  58.143  52.607  47.070  41.532  35.995
 30.458  24.920  19.382  13.844   8.307   2.769  -2.769  -8.307 -13.844 -19.382
-24.920 -30.458 -35.995 -41.532 -47.070 -52.607 -58.143 -63.679 -69.213 -74.745
-80.269 -85.761

The function griddes (page 40) can be used to print the grid description file of LOLA

and GRIB files.

In the “ready to use” grid description files the latitudes are given from north to south.

The regular grids with an odd number of latitudes and the Gaussian grids have the first

longitude exactly at 0˚. The grids r<m>x<n> with an even number <n> of latitudes

have the first longitude at (180/<n>)˚. (The idea is that values on regular grids with an

even number of latitudes are the means of boxes. The western borders of the boxes of

longitudes of index 1 are therefore 0˚.) The longitudes are equally distributed from

west to east. The following figure illustrates the situation for a regular grid with an odd

number of latitudes on the left, and for an even number of latitudes on the right.

The use of grid description files is as follows: Let the user for example wishes to select

a box given in longitude and latitude coordinates. The function sellonlatbox (page 67),

which is doing this job, asks for a complete grid description if the input file does not

FIGURE 3. The location of the grid points of regular grids. On the left, the circles represent the
grid points for a grid consisting of an odd number of latitudes, and on the right, for an even
number of latitudes. The number pairs beside the circles are the longitude and latitude indexes.

1,1 2,1 3,1

1,2 2,2 3,2

m,1

m,2

m,3 1,3 2,3 3,3

NORTH

0˚

1,1 2,1 3,1

1,2 2,2 3,2

m,1

m,2

m,3 1,3 2,3 3,3

0˚



 PAGE 27

contain the grid information, that is it is SIMPLE, EXTRA, or SERVICE. Assuming

the input file ifile.ext is in T21 the user could type

cat $GRIDS/t21.grid.asc - | lola sellonlatbox ifile.ext ofile.lola

and press control-D after finishing the input of the box coordinates.

3.7  The concept of area weights

What are area weights? - Typically in a climate data set of the globe or a part of the

globe the desired physical quantity is given on a grid: One single point represents a

mean of a box around it. These boxes are typically of different sizes, because the grid

points are of varying distance. Even if the grid points have the same longitudinal and

latitudinal distance the real distances between them is varying: The longitudes are very

close together near the poles and widely spaced at the equator. For example the dis-

tance between two longitudes at 60˚N is only half as large as at the equator, because the

cosine of 60˚ is 0.5.

While computing the global mean in this example a value at the equator must be

weighted twice as much as a value at 60˚N. The idea is now to assign every field ele-

ment of a record an area weight, which is the size of the area represented by this ele-

ment. If for every field position  the area weight is denoted by , then the area mean

is computed as , where  is the value of the field at position .

Many of the functions ending with the letter “r”, which means “for each record”, like

meanr, which computes the mean of a record, need area weights.

Whenever a function needs area weights and the input record is a GRIB or LOLA

record, or, in the case of functions with more than one input file, if one of the input

records is a GRIB or LOLA record, the grid information of this GRIB resp. LOLA

record is used to compute the area weights. But if the involved records only have

SIMPLE, EXTRA, or SERVICE format a warning is printed and all grid points are

weighted the same.

If this is not desired or if the grid used in a GRIB record is not supported (“GRIB ERROR:

Weights cannot be calculated - map type <n> not currently supported!”), or other weights

than that suggested by the stored grid should be used, e.g. because the grid information

i wi

wii∑ 
  1–

wixii∑ xi i



 PAGE 28

in the GRIB record is wrong (the user can use function griddes (page 40) to print the

assigned grid description as explained in Section 3.6 “Grid description files” on

page 24), then the area weights must supplied separately by using special weight files.

Weight files are files of record length 1 corresponding to a particular grid. They contain

the area weights of that grid as field elements.

To use the weight files the user has to call another function which has the same name

but with an additional letter “w” at the end, e.g. meanrw, which means “(using a weight

file)”. These functions have exactly one more input file, namely the weight file.

For some standard resolutions there are existing “ready to use” weight files. They can

be found in the directory grids, a subdirectory of the directory containing the executa-

ble program. Before continuing, it is best to set an environment variable like GRIDS with

this directory name. Use the command

which ext

to find the directory of the executable program.

In this directory, henceforth referred to as $GRIDS, are some useful files. All their names

begin with a grid name. The grid names are t21, t42, t106, r72x36, r72x37, r144x73,

r180x90, r180x91, r360x180, r360x181, r720x360, r720x361, where t<n> indicates a Gaussian

grid and r<m>x<n> a regular grid with <m> longitudes and <n> latitudes. There are 2

files per grid; for example, for the T21 grid there are the files

t21.grid.asc
t21.weights.lola

The file <grid>.grid.asc is a grid description file as explained in Section 3.6 “Grid

description files” on page 24. The file <grid>.weights.lola is the area weight file. The

weights are normalised to the sum of 1, but there are no functions that require this.

Weight files are used in the following way: Let us assume that the user wants to com-

pute the global means of T21 fields stored in the file ifile, and wants to store the result

in ofile. The user just has to type

ext meanrw ifile $GRIDS/t21.weights.lola ofile

Considering the fact that there is no grid information stored in SIMPLE, EXTRA or

SERVICE files, it can be seen that weighted means are still easy to calculate. (The



 PAGE 29

function name meanrw (page 97) stands for “mean for each record (using a weight

file)”).

How can the mean over a particular area (which is assumed to be a rectangular box) be

computed? There are two ways: The direct way uses the function selindexbox (page 66)

or sellonlatbox (page 67) to select the box:

ext meanrw -selindexbox ifile -selindexbox $GRIDS/t21.weights.lola ofile

where the coordinates of the box must be given twice and must be the same. (The

selected box of the weight file is not normalised to the sum of 1, but as already men-

tioned, this does not matter.)

To avoid (twice) typing the coordinates of the box every time the mean over this area is

computed, it is also possible to construct a special weight file for the desired area, using

the function maskindexbox (page 55) or masklonlatbox (page 55). This function does not

actually remove the data points outside the desired box, but rather it sets all these

entries to the missing value. Such a weight file could hence be constructed by typing

lola masklonlatbox $GRIDS/t21.weights.lola t21.weights.my_area.lola

and, once generated, used with

ext meanrw ifile t21.weights.my_area.lola ofile

If the user wishes to work with a longitude/latitude grid other than those with pre-pre-

pared weight files, the best method is first to construct a grid description file, and then

construct the weight file, or, much easier, if there is a GRIB file available containing a

description of this grid, use the function weight1 (page 50) to construct the weight file of

this grid.

To construct the weight file for a given grid description file, use the function weight0

(page 49). e.g.

lola weight0 r72x36.weights.lola < r72x36.grid.asc

If weight files are to be constructed for only land or sea, the user first has to find a sea/

land mask. This is a task the user has to do for himself. Once he has such a mask, he

can easily construct the desired weight files using the functions ifthen (page 89) and



 PAGE 30

ifnotthen (page 90). For example, if the sea/land mask is called r72x36.slmask.ext, he

can type:

lola ifthen r72x36.slmask.ext r72x36.weights.lola r72x36.weights.land.lola
lola ifnotthen r72x36.slmask.ext r72x36.weights.lola r72x36.weights.sea.lola

The new weight files can be normalised by using the function normalize (page 56) func-

tion, although this is not necessary.

lola normalize -ifthen r72x36.slmask.ext r72x36.weights.lola \
  r72x36.weights.land.lola
lola normalize -ifnotthen r72x36.slmask.ext r72x36.weights.lola \
  r72x36.weights.sea.lola

If the user wishes to work with a grid which is not a longitude/latitude grid, he must

write his own FORTRAN program to produce the weight file.

In some situations it is defensible to use constant weights to get a first impression.

Then function const (page 50) applied as -const,1 can be used instead of the weight file:

ext meanrw ifile -const,1 ofile

3.8  How to convert files into SIMPLE, EXTRA, SERVICE, LOLA, or

GRIB?

We consider two possibilities: In the first case the user has already a SIMPLE,

EXTRA, SERVICE, LOLA, or GRIB file and wants to change it into another of one of

these five formats, and in the second case the user has an ascii file. In all other cases,

the file should first be converted to ascii format.

As regards the first case: The user can use the function copy (page 48) for converting to

SIMPLE, EXTRA, SERVICE, or LOLA and the function copy2 (page 48) for convert-

ing to GRIB. These functions are copying the contents of the input file to the output file

and are changing the format due to the given program name. Remember: The name

how the program was called determines the output format.

First example: To change the GRIB file file.grb to the EXTRA format, just type

ext copy file.grb file.ext

Second example: To upgrade the format of the SERVICE file file.srv to the LOLA for-

mat, assuming that the grid is T21, just type



 PAGE 31

lola copy file.srv file.lola < $GRIDS/t21.lola.asc

$GRIDS/t21.lola.asc is a grid description file which is explained in Section 3.6 “Grid

description files” on page 24 and GRIDS is an environment variable which should be set

as described in that section.

Even though some information of the grid is known, namely the number of longitudes

and latitudes, the program asks for the complete description of the grid to facilitate the

use of a grid description files.

Third example: Let us assume that the EXTRA file file.ext contains data belonging to

a Gaussian T21 grid and that any_t21_data_set.grb is a GRIB file containing a T21 data

set. To change now the EXTRA file file.ext to GRIB format containing the T21 grid

description of any_t21_data_set.grb, the user has to type

grb2 copy2 file.ext any_t21_data_set.grb file.grb

(The trick is that all GRIB records that are written by this program get the description

part of the last read in GRIB record which is in this case from any_t21_data_set.grb.)

If the program would be called as grb instead of grb2, the accuracy of the GRIB record

of file.grb would be the greatest accuracy of both input files. This is normally not

desired, so CALL grb2 INSTEAD OF grb.

As regards the second case: Imagine that the user has been given an ascii format file

called file.asc, and wants to make an EXTRA file called file.ext, or a SERVICE file

called file.srv, or a LOLA file called file.lola out of it. Let us assume that the file

file.asc is of an arbitrary format, but with at least one blank, tab, or new line between

two numbers. (If this is not the case the user could use the unix commands cut, paste, or

vi to insert blanks between the numbers.) Also important: The exponential ascii rep-

resentation must not contain a D or d, it must always be E or e, so change 1.00D-04 to

1.00E-04 for example.

To start with, the user must create an EXTRA (or SERVICE or LOLA) file by using the

function input (page 44). If the size of the field of each record is 2592, if the dates of

the records are to be numbered from 18530100 in monthly steps, if the time is 0 and

must not be increased, if the code is 167, and if there is only 1 level per date which is 0,

he could type:



 PAGE 32

ext4 input,2592,18530100,100,0,0,167,1,0 file.ext < file.asc

Or, if the user wants to create a SERVICE file called file.srv with 72 longitudes, 36

latitudes, and the same header, he could type:

srv4 input,72,36,18530100,100,0,0,167,1,0 file.srv < file.asc

Or, if the user wants to create a LOLA file called file.lola with the same header, he

could type

echo 18530100 100 0 0 167 1 0 72 36 | cat $GRID/r72x36.grid.asc - file.asc |\
  lola4 input file.lola

where $GRID/r72x36.grid.asc is a grid description file, see Section 3.6 “Grid description

files” on page 24 for details.

After doing this, the user can check the contents of file.ext (or file.srv or file.lola)

with the function info (page 38), or with longinfo (page 39).

It may then be necessary to shift the field to the left or to the right, or swap left with

right or the top with the bottom to give consistency with other existing files. For this,

the user can use the function shiftleft (page 56), shiftright (page 56), swapleftright

(page 56), or swaptopbottom (page 57).

Lastly, it may be necessary to set some numbers to the missing value. For example, the

missing value in the data could be -9999, and let us assume that the user uses the

default missing value, so that -9999 appears in the data as -9999 and not as a missing

value. To change a constant into the missing value, the user should call the function

setctomiss (page 68).

The other way around, converting SIMPLE, EXTRA, SERVICE, LOLA, or GRIB files

to ascii, is just to call one of the functions output (page 46), outputsmp (page 46), outpu-

text (page 46), outputsrv (page 47), or outputlola (page 47).

3.9  How to transfer files to other computers?

Because GRIB is a standard, GRIB files can be transferred from one computer to

another without taking care about internal number representations.



 PAGE 33

So it remains the question of how transfer EXTRA, SERVICE, or LOLA files between

computers with different internal number representations. Two ways are possible:

The first is to change the format of the files into GRIB, transfer the GRIB file, and

change the format back. (For details see Section 3.8 “How to convert files into SIM-

PLE, EXTRA, SERVICE, LOLA, or GRIB?” on page 30.) But in GRIB the numbers

are compressed, so that after changing the format back to EXTRA, SERVICE, or

LOLA they might have been changed a little.

The second way is to convert the file to ascii format, and then compress it if the data

transfer is slow. After transfer, the file has to be uncompressed if necessary, and then

converted back into EXTRA, SERVICE, or LOLA format. (The size of the compressed

ascii file is of the same magnitude as that of the original file).

Let, for example, the SIMPLE file ifile be given. The commands at the sender side are

smp outputsmp ifile > ifile.asc
compress ifile.asc

The compress command generates a file named ifile.asc.Z which can now be sent. The

receiving user has to type

uncompress ifile.asc.Z
smp inputsmp ifile < ifile.asc

If ifile is an EXTRA file, the sender should type

ext outputext ifile > ifile.asc
compress ifile.asc

and the receiving user should type

uncompress ifile.asc.Z
ext inputext ifile < ifile.asc

If ifile is a SERVICE file, the sender should type

srv outputsrv ifile > ifile.asc
compress ifile.asc

and the receiving user should type

uncompress ifile.asc.Z
srv inputsrv ifile < ifile.asc



 PAGE 34

If ifile is a LOLA file, the sender should type

lola outputlola ifile > ifile.asc
compress ifile.asc

and the receiving user should type

uncompress ifile.asc.Z
lola inputlola ifile < ifile.asc

3.10  Computations for each level separately

Sometimes it is desirable that computations should be performed for each level sepa-

rately. For example, imagine that the monthly averages are to be computed for an input

file of temperature at 15 levels. The simple call

ext monavg ifile ofile

does not work correctly, because the function monavg computes the average of all fields

for each month, with no regard to level. If, for one month, the 15 levels are stored con-

secutively, then the averages could be correctly calculated by typing:

In the first step ifile was divided by split15 (split<n> (page 60)) into 15 files. Every

record of ifile at the first level is now stored in o01, every record at the second level in

o02, etc. The computation of the monthly averages is now done separately for each

level in the next 15 steps. Afterwards, all the levels are merged together by the function

merge15 (merge<n> (page 60)).

ext split15 ifile o01 o02 o03 o04 o05 o06 o07 o08 o09 o10 o11 o12 o13 o14 o15
ext monavg o01 m01
ext monavg o02 m02
ext monavg o03 m03

BAD EXAMPLE !
ext monavg o04 m04
ext monavg o05 m05
ext monavg o06 m06
ext monavg o07 m07
ext monavg o08 m08
ext monavg o09 m09
ext monavg o10 m10
ext monavg o11 m11
ext monavg o12 m12
ext monavg o13 m13
ext monavg o14 m14
ext monavg o15 m15
ext merge15 m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12 m13 m14 m15 ofile
rm o?? m??



 PAGE 35

A short-cut exists which summarizes all these steps. Just type

The job onlevels needs a program name as its first argument, a function name as its sec-

ond argument, then an arbitrary number of input file names followed by one output file

name. Input files may consist of only one level. These files are treated as if they had the

same field on all levels, thus, for example, the correlation between the single level pre-

cipitation stored in ifile1 and the multi level temperature fields stored in ifile2 can be

calculated with the following call

onlevels ext cor ifile1 ifile2 ofile

This job creates temporary files in the directory $TMPDIR. If not enough disk space is

available in this directory, change it to another one.

3.11  About everlasting zombies, parent killing children, and other

unimportant things

This chapter can be skipped, as knowledge of its contents is not necessary for use of

the program.

Irrespective of the program name, the output format of a child process is an internal

pipe format. It is GRIB like, if one of the input files is GRIB, otherwise it is LOLA like

if the grid is known, otherwise it is SERVICE like, if the number of latitudes is known,

otherwise it EXTRA like. It is never PURE or SIMPLE. If a GRIB input field was

decompressed, then no compression is made for output.

If a process receives the CONT-signal, it prints after a while a status message. This can be

used for functions which need very long time for computation to see what they are just

doing. The function status (page 44) can be used to find out this signal number. Let for

example this signal number be 19. Then the unix command kill -19 <process ID> sends

this signal to the process which status is to be asked. It does not kill it! C-shell users

can also stop this process by pressing CONTROL-Z and starting it again by the shell com-

mand %. This starting makes the C-shell sending the CONT-signal to the process.

onlevels ext monavg ifile ofile PREFERRED SOLUTION!



 PAGE 36

If a child process is not needed any longer it will be killed. For example, if the user

wants to select only the first record of ifile after subtracting 273.15 from it, he types:

ext selfirstrec -subc ifile ofile

The computer writes

ext selfirstrec: Started child process: “ext(2) subc ifile (pipe 2.1)”
ext(2) subc: Enter constant!
ext(2) subc>

The user types 273.15 and gets

OK
ext selfirstrec: Processed 1 record.

After the function selfirstrec selected the first record, there was no need to evaluate

the function subc any longer, thus an interrupt signal was sent from the selfirstrec-

function to the subc-function. A look at the protocol file confirms this:

    (  831) 96-01-10 13:08:53 started in /mf/k/k204099/datas:
ext selfirstrec -subc ifile ofile
    (  833) 96-01-10 13:08:53 started child of 831:
  ext(2) subc infile (pipe 2.1)
    (  833) 96-01-10 13:08:58 input values: 273.15
    (  833) 96-01-10 13:08:58 received signal 2 (Interrupt)!
    (  831) 96-01-10 13:08:58 Processed 1 records.

A remark concerning parallel computations: If several processes need to print on stand-

ard output or standard error at the same time, this does not lead to a chaotic screen,

because there is synchronisation of all the processes involved. Only one process at a

time can print to one of both, the standard output and the standard error. If a process

needs standard input, it locks the screen from the moment it prints the request for input,

until after the input has been given. This behaviour ensures that the correct process

receives the input data.

If a process encounters an error or receives an error signal, it kills all its children by

sending the signal “Broken Pipe” and, if it is not the root process, it also kills the root

process, again by sending it the “Broken Pipe” signal. Thereafter this process pauses if

it is not the root process. It does not close the pipes until this pause. If the root process

is killed by a signal, it returns a nonzero exit code. This behaviour ensures that the user

gets a nonzero exit code if one of the children or one of their descendants encounters an

error, and it prevents the occurrence of everlasting “zombies”. (If a process has died, its



 PAGE 37

“soul” (which is its exit code) must be “rescued” by its parent process, but if this parent

is already dead, an everlasting “zombie” would arise. The user can recognise “zom-

bies” by the status “Z” in a process list created by the unix command “ps“, but it is not

possible to kill them, since they are already dead. A process will kill all its children and

its grandparent to prevent itself becoming an everlasting zombie. What a cruel world!)

A last topic: In the directory of the executable program there is a directory called stat.

This directory contains one file named statistic. After every successful start the pro-

gram tries to write one line of statistical information into this file to enable the authors

to separate the functions into important and less important ones. The version number,

the date, a hash of the user name, the name how the program was started, and all

involved functions are written into this file which is readable to everyone. To avoid dis-

advantages in speed the statistic is written by a child process which is destroying itself

at the latest after 60 seconds.



 PAGE 38

4.  The functions

This section gives a description of the function. For easier description all input files are

named ifile or ifile1, ifile2, etc. and all output files are named ofile or ofile1, ofile2,

etc. Further the following notion is introduced:

4.1  Information

shortinfo

ifile

(“short information”) Prints short information of the records of ifile. That is the

format, date, time, code, level, and size. If the field is complex, this is also

printed. If there is information in dispo #1 or dispo #2, this is also printed.

For GRIB records the accuracy is not printed. This is due to the fact that this

function avoids reading the field for speed reasons, but without reading the field

it is not possible for the program to determine the accuracy of a GRIB record. To

print the accuracy of a GRIB record, use function formatinfo (page 39) instead.

info

ifile

(“information”) Prints information of the records of ifile. That is the date, code,

level, size, and the minimum, mean, and maximum value, and the number of

missing values. The mean value is computed without the use of area weights!

Record number  of ifile.

Element number  of the field of record number  of ifile.

Element number  of the field of record number  of ifile<j>.

Record number  of ofile.

Element number  of the field of record number  of ofile.

Element number  of the field of record number  of ofile<j>.

i t( ) t

i t x,( ) x t

ij t x,( ) x t

o t( ) t

o t x,( ) x t

oj t x,( ) x t



 PAGE 39

longinfo

ifile

(“long information”) Prints long informations of the records of ifile. That is the

complete header and the complete field.

formatinfo

ifile

(“Format information”) Identical to function shortinfo (page 38) with the differ-

ence that also the field is read. Thus this function is slowlier but can also print the

accuracy of GRIB records.

pipeinfo

ifile ofile

(“Pipe information”) Prints the same than function info (page 38) and copies

ifile to ofile. The sense is to get information of what is flowing through an pipe.

For example the command

ext monmeans -daymins pipe1 pipe2 &

in the example on page 24 could be replaced by

ext pipeinfo -monmeans -daymins pipe1 pipe2 &

pipeshortinfo

ifile ofile

(“Pipe short information”) Prints the same than function shortinfo (page 38) and

copies ifile to ofile. The sense is to get information of what is flowing through

an pipe. For example the command

ext monmeans -daymins pipe1 pipe2 &

in the example on page 24 could be replaced by

ext pipeshortinfo -monmeans -daymins pipe1 pipe2 &



 PAGE 40

gribinfo

ifile

(“GRIB information”) Prints for GRIB records all information stored in the

description part. Can be used to see entries for the used grid, the centre ID, etc.

griddes

ifile

(“grid description”) The grid description of the first record is printed. See

Section 3.6 “Grid description files” on page 24 for details. Typically the standard

output is redirected in a file, for example

ext griddes t21.grb > t21.grid.asc

grads

ifile ofile

(“grads”) Prints a description file of ifile on standard output for the plotting soft-

ware grads. Typically the standard output is redirected in a file and the program is

called as pure4 or pure8, depending on what is the natural size of a float. Example:

pure4 grads file.grb file.grads > file.des
grads -l

After starting grads, the user can open the file by the command

open file.des

and can display for example code 167 by

display c167

nrec

ifile

(“number of records”) Prints the number of records of ifile.



 PAGE 41

nyear

ifile

(“number of years”) Prints the number of different years. This functions assumes

that the records for the same year are immediately adjacent. See also function

showyear (page 42).

nmon

ifile

(“number of months”) Prints the number of different combinations of years and

months. This functions assumes that the records for the same year and month are

immediately adjacent. See also function showmon (page 42).

ndate

ifile

(“number of dates”) Prints the number of different dates. This functions assumes

that the records for the same date are immediately adjacent. See also function

showdate (page 42).

ntime

ifile

(“number of times”) Prints the number of different combinations of date and

time. This functions assumes that the records for the same date and time are

immediately adjacent. See also function showtime (page 43).

ncode

ifile

(“number of codes”) Prints per date the number of different codes. This functions

assumes that the records for the same date are immediately adjacent and that the

records for the same date and code are ordered in such a way that all records of



 PAGE 42

the same code are immediately adjacent. This function can well be used in con-

junction with function selfirstdate (page 63) as

ext ncode -selfirstdate ifile

See also function showcode (page 43).

nlevel

ifile

(“number of levels”) Prints per date and code the number of levels. This func-

tions assumes that the records for the same date and code are ordered in such a

way that all records of the same code are immediately adjacent. This function can

well be used in conjunction with function selfirstcode (page 65) as

ext nlevel -selfirstdate ifile

See also function showlevel (page 43).

showyear

ifile

(“show year”) Prints all different years. This functions assumes that the records

for the same year are immediately adjacent.

showmon

ifile

(“show month”) Prints all different combinations of years and months. This func-

tions assumes that the records for the same year and month are immediately adja-

cent.

showdate

ifile

(“show date”) Prints all different dates. This functions assumes that the records

for the same date are immediately adjacent.



 PAGE 43

showtime

ifile

(“show time”) Prints all different combinations of dates and times. This functions

assumes that the records for the same date and time are immediately adjacent.

showcode

ifile

(“which codes”) Prints per date all different codes. This functions assumes that

the records for the same date are immediately adjacent and that the records for

the same date and code are ordered in such a way that all records of the same

code are immediately adjacent. This function can well be used in conjunction

with function selfirstdate (page 63) as

ext showcode -selfirstdate ifile

showlevel

ifile

(“show level”) Prints per date and code all different levels. This functions

assumes that the records for the same date and code are ordered in such a way

that all records of the same code are immediately adjacent. This function can

well be used in conjunction with function selfirstcode (page 65) as

ext showlevel -selfirstcode ifile

countc

ifile ofile

(“count constant”)

o 1 x,( ) # i t ′ x ′,( ) x ′ x i t ′ x ′,( ) miss≠ i t ′ x ′,( ) c=∧,=,{ }=



 PAGE 44

countcr

ifile ofile

(“count constant for each record”)

status

(“status”) Prints the signal number of the CONT-signal. This can be used for other

functions which need very long time for computation to see what they are just

doing. Let for example this signal number be 19. Then the unix command kill -

19 <process ID> sends this signal to the process which status is to be asked. It does

not kill it! (C-shell users can also stop this process by pressing CONTROL-Z and

starting it again by the shell command %. This starting makes the C-shell sending

the CONT-signal to the process).

4.2  Formatted input and output

input

ofile

(“input ascii”) This function reads ascii numbers from standard input and stores

them as field elements of ofile. Read Section 3.8 “How to convert files into SIM-

PLE, EXTRA, SERVICE, LOLA, or GRIB?” on page 30 for details of use. The

first input numbers concerning the headers should be given as advanced input as

described in Section 3.3 “Advanced standard input” on page 21. The input of the

fields should be redirected to a file.

inputsmp

ofile

(“input ascii SIMPLE likely”) This function reads ascii numbers from standard

input which are in an SIMPLE likely sequence and stores them in ofile. Read

o t 1,( ) # i t ′ x ′,( ) t ′ t i t ′ x ′,( ) miss≠ i t ′ x ′,( ) c=∧,=,{ }=



 PAGE 45

Section 3.9 “How to transfer files to other computers?” on page 32 for details of

use. Normally the standard input is redirected to a file.

The numbers that are read are exactly that ones which are written out by

outputsmp (page 46). For that reason inputsmp could be understood as the opposite

of outputsmp.

inputext

ofile

(“input ascii EXTRA likely”) This function reads ascii numbers from standard

input which are in an EXTRA likely sequence and stores them in ofile. Read

Section 3.9 “How to transfer files to other computers?” on page 32 for details of

use. Normally the standard input is redirected to a file.

The numbers that are read are exactly that ones which are written out by

outputext (page 46). For that reason inputext could be understood as the opposite

of outputext.

inputsrv

ofile

(“input ascii SERVICE likely”) This function reads ascii numbers from standard

input which are in an SERVICE likely sequence and stores them in ofile. Read

Section 3.9 “How to transfer files to other computers?” on page 32 for details of

use. Normally the standard input is redirected to a file.

The numbers that are read in are exactly that ones which are written out by

outputsrv (page 47). For that reason inputsrv could be understood as the opposite

of outputsrv.

inputlola

ofile

(“input ascii LOLA likely”) This function reads ascii numbers from standard

input which are in a LOLA likely sequence and stores them in ofile. Read



 PAGE 46

Section 3.9 “How to transfer files to other computers?” on page 32 for details of

use. Normally the standard input is redirected to a file.

The numbers that are read in are exactly that ones which are written out by

outputlola (page 47). For that reason inputlola could be understood as the oppo-

site of outputlola.

output

ifile

(“output”) Prints all values to standard output.

outputint

ifile

(“output integer”) Prints all values rounded to the nearest integers to standard

output, each record in one line.

outputsmp

ifile

(“output ascii SIMPLE likely”) This function writes all headers and fields of

ofile as ascii numbers to standard output in an SIMPLE likely sequence. Read

Section 3.9 “How to transfer files to other computers?” on page 32 for details of

use. Normally the standard output is redirected to a file.

The numbers that are written out are exactly that ones which are read in by

inputsmp (page 44). For that reason inputext could be understood as the opposite

of outputext.

outputext

ifile

(“output ascii EXTRA likely”) This function writes all headers and fields of ofile

as ascii numbers to standard output in an EXTRA likely sequence. Read



 PAGE 47

Section 3.9 “How to transfer files to other computers?” on page 32 for details of

use. Normally the standard output is redirected to a file.

The numbers that are written out are exactly that ones which are read in by

inputext (page 45). For that reason inputext could be understood as the opposite

of outputext.

outputsrv

ifile

(“output ascii SERVICE likely”) This function writes all headers and fields of

ofile as ascii numbers to standard output in an SERVICE likely sequence. Read

Section 3.9 “How to transfer files to other computers?” on page 32 for details of

use. Normally the standard output is redirected to a file.

The numbers that are written out are exactly that ones which are read in by

inputsrv (page 45). For that reason inputsrv could be understood as the opposite

of outputsrv.

outputlola

ifile

(“output ascii LOLA likely”) This function writes all headers and fields of ofile

as ascii numbers to standard output in a LOLA likely sequence. Read Section 3.9

“How to transfer files to other computers?” on page 32 for details of use. Nor-

mally the standard output is redirected to a file.

The numbers that are written out are exactly that ones which are read in by

inputlola (page 45). For that reason inputsrv could be understood as the opposite

of outputsrv.



 PAGE 48

4.3  Converting the format

copy

ifile ofile

(“copy”) Copies each record of ifile to ofile. This function is normally used to

change the format of ifile to EXTRA or SERVICE. For example: To change the

GRIB file file.grb to the EXTRA format, just type

ext copy file.grb file.ext

Remember: The name of the program, in this example it is “ext”, determines the

output format. See also function copy2 (page 48).

copy2

ifile1 ifile2 ofile

(“copy”) Copies each record of ifile1 to ofile. The headers and fields of ifile2

are ignored. This function is normally used to change a SIMPLE, EXTRA,

SERVICE, or LOLA file to GRIB format. In this case the description parts of the

GRIB records of ifile2 are used for the description parts of the records of ofile.

(The trick is that all GRIB records that are written by this program get the

description part of the last read in GRIB record which are in this case from

ifile2.) For example: Let us assume that the EXTRA file file.ext contains data

belonging to a Gaussian T21 grid and that any_t21_data_set.grb is a GRIB file

containing a T21 data set. To change now the EXTRA file file.ext to GRIB for-

mat containing the T21 grid description of any_t21_data_set.grb, the user has to

type

grb2 copy2 file.ext any_t21_data_set.grb file.grb

Remember: The name of the program, in the example it is “grb2”, determines the

output format. See also function copy (page 48).

If the program would be called as grb instead of grb2, the accuracy of the GRIB

record of file.grb would be the greatest accuracy of both input files. This is nor-

mally not desired, so CALL grb2 INSTEAD OF grb.



 PAGE 49

4.4  Generation of files

weight0

ofile

(“weight”) An area weight file is generated, see Section 3.7 “The concept of area

weights” on page 27 for more information. The requested input is exactly what is

written in a grid description file, see Section 3.6 “Grid description files” on

page 24. The area weights are the sizes of the areas which are bounded by lines

exactly between the neighboured grid points.

The rules for the most western points are: The western boundary line for the

areas lies between the these most western points and the most eastern points, but

the longitudinal distance to west is never greater than to the east.

For example: If the two western longitudes are 30˚E and 40˚E and the most east-

ern one is 100˚E, then the areas of grid points at longitude 40˚E are bordered by

35˚E in the West and 45˚E in the East, and the areas of the grid points at longi-

tude 30˚E are bordered by lines at 25˚E in the East and 35˚E in the West. If the

most eastern longitude would be 28˚E instead of 100˚E, then the areas at grid

points at longitude 30˚E would be bordered by lines at 29˚E in the West. A corre-

sponding rule holds for the most eastern points.

The rules for the most northern points are: The northern boundary line for the

areas has the same latitudinal distance to the north than to the south, but it is

never greater than 90˚N. A corresponding rule holds for the most southern points.

For example: If the three most northern latitudes are at 85˚N, 80˚N, and at 75˚N,

then the areas of the grid points at latitude 80˚N are bordered by lines at 77.5˚N

in the South and at 82.5˚N in the North, and the areas of the grid points at latitude

85˚N are bordered by lines at 82.5˚N in the South and 87.5˚N in the North. If

there would be additional grid points at 90˚N, then the corresponding areas are

bordered by lines at 87.5˚N in the South and 90˚N in the North.



 PAGE 50

weight1

ifile ofile

(“weight”) Writes the area weights of the first record of ifile to ofile. This func-

tion can be used to create a weight file, see Section 3.7 “The concept of area

weights” on page 27 for more information.

null

ofile

(“null”) Writes one record into ofile which consists of a field of size 1 with 0 as

element. If for example in a command the “filling up” of file ifile (See

Section 2.4 “The “Filling up” of input files and “enlarging” of input records” on

page 16) should be done with a null field and not with a copy of the last record, it

could be typed

-cat2 ifile -null in the command line instead of ifile.

const

ofile

(“constant”) Write one record into ofile which consists of a field of size 1 with a

user given number as element. Such a file behaves in formulas like a constant,

imagine the example ext div -const,100 ifile 100_div_by_ifile where 100 is

divided by ifile.

consts

ofile

(“constant series”) Writes in every record of ofile a field of size 1 with for every

record another user given number as element. In the example ext add ifile

-consts ifile_plus_constants the user can give for every record another constant

which should be added to the fields of ifile.



 PAGE 51

pi

ofile

(“ ”) Write one record into ofile which consists of a field of size 1 with the

mathematical constant  as element. Such a file behaves in formulas like a con-

stant, imagine the example ext sin -divc,180 -mul -pi ifile ofile.

e

ofile

(“e”) Write one record into ofile which consists of a field of size 1 with the math-

ematical constant e as element. Such a file behaves in formulas like a constant,

imagine the example ext mul ifile -e e_times_ifile where ifile is multiplied by

e.

for

ofile

(“for number = a to b step c”) For generation of records with field size 1 and field

elements beginning with a start value in record 1 which is increased from one

record to the next. For example the command

ext info -for,1,2,0.25

writes to standard output

  REC :    DATE COD LEVEL      SIZE      MINIMUM       MEAN    MAXIMUM :   MISS
    1 :       0   0     0         1 :  1.000e+00  1.000e+00  1.000e+00 :      0
    2 :       0   0     0         1 :  1.250e+00  1.250e+00  1.250e+00 :      0
    3 :       0   0     0         1 :  1.500e+00  1.500e+00  1.500e+00 :      0
    4 :       0   0     0         1 :  1.750e+00  1.750e+00  1.750e+00 :      0
    5 :       0   0     0         1 :  2.000e+00  2.000e+00  2.000e+00 :      0

This function can be used for the creation of tables, try for fun

ext output -for,-5,5,0.1 > gauss_x.asc
ext output -div -exp -mulc,-0.5 -sqr -gensteps,101,-5,0.1 -sqrt -mulc,2 -pi \
  > gauss_y.asc
paste gauss_x.asc gauss_y.asc > gauss.asc
xvgr gauss.asc

π

π



 PAGE 52

random

ofile

(“random”) Generates a file of rectangularly distributed random numbers in the

interval [0,1). (The internal start value of the random generator depends on the

system time and the process identity number.)

randomnormal

ofile

(“random normally distributed”) Generates a file of normally distributed random

numbers. (The internal start value of the random generator depends on the sys-

tem time and the process identity number.)

4.5  Manipulating the header

chdate

ifile ofile

(“change date”) Changes the date. A start date and a date step must be given in

the YYYYMMDD format. The dates of the records of ifile is changed into a

new date, which is at the beginning the start date and which is increased by a date

step whenever a record has the same time, code, and level as the first record.

chtime

ifile ofile

(“change time”) Changes the date and time. A start date and date step and a start

time and time step must be given. The dates must be given in the YYYYMMDD

format, the times in the HHMM format. The dates and times of the records of

ifile are changed into a new date and time, which is at the beginning the start

date and start time and which is increased by a date step and time step whenever

a record has the same code and level as the first record.



 PAGE 53

chyear

ifile ofile

(“change year”) Changes the year in every record of ifile to the same given

value.

chmon

ifile ofile

(“change month”) Changes the month in every record of ifile to the same given

value.

chday

ifile ofile

(“change day”) Changes the day in every record of ifile to the same given value.

chcode

ifile ofile

(“change code”) Changes the code in every record of ifile to the same given

value.

chcodes

ifile ofile

(“change codes”) Changes some user given codes of ifile to new user given val-

ues. First the user has to give the number of different codes to be changed. After-

wards he has to type in pairs of old and new codes.

chlevel

ifile ofile

(“change level”) Changes the level in every record of ifile. The user gives a list

of levels which is used cyclically to change the levels of the records. This list is



 PAGE 54

read from the beginning every time when a new code or a new date is read from

ifile. If this is not desired, the dates can be set to 0 by using chdate,0,0 (chdate

(page 52)).

chdispo1

ifile ofile

(“change dispo #1”) Changes the dispo #1 entry in every record of ifile. Because

only SERVICE and LOLA format have a dispo #1 entry, this function is only

useful if the output format is SERVICE or LOLA. This value can be used to store

a centre ID or what ever the user wants. The functions longinfo (page 39) and

shortinfo (page 38) shows the dispo entries if they are different to zero.

chdispo2

ifile ofile

(“change dispo #2”) Changes the dispo #2 entry in every record of ifile. Because

only SERVICE and LOLA format have a dispo #2 entry, this function is only

useful if the output format is SERVICE or LOLA. This value can be used to store

an experiment number or what ever the user wants. The functions longinfo

(page 39) and shortinfo (page 38) shows the dispo entries if they are different to

zero.

4.6  Manipulating the field

chsize

ifile ofile

(“change size”) Changes the size of the field. If the new size is smaller than the

original one, then the field is cut. If the new size is greater than the original one,

then the field is filled up with missing values. See also function enlarge (page 58).



 PAGE 55

maskindexbox

ifile ofile

(“mask index box”) Masks a box of the rectangularly understood fields, i.e. the

elements inside the box are untouched, the elements outside are set to the missing

value. The field size of the records of ofile is therefore the same than that of

ifile. The user has to give the indexes of the edges of the box. The index of the

left edge may be greater than that of the right edge. See also function selindexbox

(page 66).

The next figure demonstrate the numbering: To mask the bold marked box, the

user has to type in 10 for index as the left and 2 for the index as the right column

and 2 as the index of lower and 4 as the index of the upper row. (The numbers at

the top are the indexes of the columns, that on the left handed side are that of the

rows.)

masklonlatbox

ifile ofile

(“mask longitude/latitude box”) Masks a box of the rectangularly understood

fields, i.e. the elements inside the box are untouched, the elements outside are set

to the missing value. The user has to give the longitudes and latitudes of the

edges of the box. The field size of the records of ofile is therefore the same than

that of ifile. See also function sellonlatbox (page 67).

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6



 PAGE 56

normalize

ifile ofile

(“normalize”)

shiftleft

ifile ofile

(“shift left”) The rectangularly understood fields are cyclically shifted to the left.

shiftright

ifile ofile

(“shift right”) The rectangularly understood fields are cyclically shifted to the

right.

swapleftright

ifile ofile

(“swap left with right”) The rectangularly understood fields are left right

swapped, t.i. the first column is swapped with the last one, the second is swapped

with the second last, etc.

swaprightleft

ifile ofile

(“sap right with left”) The same as swapleftright (page 56).

o t x,( ) i t x,( )
i t x ′,( )

x ′ i t x ′,( ) miss≠,
∑

--------------------------------------------------=



 PAGE 57

swaptopbottom

ifile ofile

(“swap top with bottom”) The rectangularly understood fields are top bottom

swapped, t.i. the first row is swapped with the last one, the second is swapped

with the second last, etc.

swapbottomtop

ifile ofile

(“swap bottom with top”) The same as swaptopbottom (page 57).

break

ifile ofile

(“break”) Breaks every record of ifile in a user given number of pieces of equal

field size which are stored adjacent in ofile. This could be useful for two reasons:

If otherwise computations could not be done for storage reasons or a field should

be divided into different levels. break is the opposite of melt (page 57).

break<n>

ifile ofile1 ... ofile<n>

(“break”) Breaks every record of ifile in <n> pieces of equal field size which are

stored in ofile1 ... ofile<n>. This could be useful for two reasons: If otherwise

computations could not be done for storage reasons or a field should be divided

into different levels. break<n> is the opposite of melt<n> (page 58).

melt

ifile ofile

(“melt”) Melts the fields of every sequence of a user given length together to one

record, t.i. if the length of the sequence is L, the field of the first record of ofile is

melted of the fields of record 1 to L of ifile, the second record of ofile is melted

of the fields of record L+1 to 2L of ifile, etc. melt is the opposite of break.



 PAGE 58

meltall

ifile ofile

(“melt all”) Melts the fields of all records of ifile together to one field which is

stored in ofile.

melt<n>

ifile1 ... ifile<n> ofile

(“melt”) The field of record R of ofile is melted by the fields of record R of

ifile1 ... ifile<n>. melt<n> is the opposite of break<n>. If the records have different

sizes, use the function chsize (page 54).

enlarge

ifile ofile

(“enlarge”) Enlarge the field of ifile by a user given factor. If the field size is

and this factor is  then it is

thinout

ifile ofile

(“thin out”) Thins out ifile by missing out a user given number of records while

copying ifile to ofile. If only every -th record should be taken, then it is

thinoutr

ifile ofile

(“thin out for each record”) Thins out the rectangularly understood fields of

ifile. A user gives the number of longitudes and latitudes to be skipped while

copying ifile to ofile. If the number of longitudes of ifile is  and the

n

K

o t x,( ) o t x n+,( ) o t x 2n+,( ) … o t x Kn+,( ) i t x,( )= = = = =

s

o t x,( ) i 1 t 1–( ) s+ x,( )=

nlon



 PAGE 59

number of latitudes is  and if only every -th longitude and only every

-th latitude should be taken, then the number of longitudes of ofile is

that of latitudes is

and it is

4.7  Manipulating the sequence of records

reverse

ifile ofile

(“reverse”) Reverses the sequence of the records in ifile. If  is the number of

records of ifile, then it is

reverser

ifile ofile

(“reverse for each record”) Reverses the sequence of field elements in ifile. If

 is the number of field elements of record number  of ifile, then it is

transpose

ifile ofile

(“transpose”) ifile is understood as a matrix with each record as a row. This

matrix is transposed:

nlat slon

slat

mlon 1 nlon 1–( )+ slon⁄=

mlat 1 nlat 1–( )+ slat⁄=

o t xlon xlat,( ),( ) i t 1 xlon 1–( ) slon+ 1 xlat 1–( ) slat+,( ),( )=

N

o t x,( ) i N t– 1+ x,( )=

N t( ) t

o t x,( ) i t N t( ) x– 1+,( )=



 PAGE 60

transposer

ifile ofile

(“transpose for each record”) Each record of ifile is understood as a matrix.

These matrixes are transposed: If  is the number of longitudes and

 is the number of latitudes of record , then it is

split<n>

ifile ofile1 ... ofile<n>

(“split”) Splits ifile into the <n> output files record by record. The first record of

ifile becomes the first record of ofile1, the second record of ifile becomes the

first record of ofile2, ... , and the <n>th record of ifile becomes the first record of

ofile<n>. The (<n>+1)st record of ifile becomes the second record of ofile1, the

(<n>+2)nd record of ifile becomes the second record of ofile2, ... , and the

(2<n>)th record of ifile becomes the second record of ofile<n>, the (2<n>+1)st

record of ifile becomes the third record of ofile1 etc. split<n> is the opposite of

merge<n>.

merge<n>

ifile1 ... ifile<n> ofile

(“merge”) Merges the <n> input files into ofile record by record. The first record

of ofile was the first record of ifile1, the second record of ofile was the first

record of ifile2, ... , and the <n>th record of ofile was the first record of ifile<n>.

The (<n>+1)st record of ofile was the second record of ifile1, the (<n>+2)nd

record of ofile was the second record of ifile2, ... , and the (2<n>)th record of

ofile was the second record of ifile<n>, the (2<n>+1)st record of ofile was the

third record of ifile1 etc. merge<n> is the opposite of split<n>. If the records have

different sizes, use the function chsize (page 54).

o t x,( ) i x t,( )=

nlon t( )

nlat t( ) t

o t ilon nlon t( ) ilat 1–( )+,( ) o t ilat nlat t( ) ilon 1–( )+,( )=



 PAGE 61

mergedate2

ifile1 ifile2 ofile

(“merge sorted by dates”) Merges the records of ifile1 and ifile2 sorted by date,

t.i. every record of ifile1 and every record of ifile2 is in ofile, and all records in

ofile are sorted by date. THIS FUNCTION ASSUMES THAT THE RECORDS

ARE SORTED BY DATE!

replace

ifile1 ifile2 ofile

(“replace”) This function can be used to replace some records of ifile1 by

records of ifile2. The records of ifile1 are copied to ofile as long as the header

of the record does not mach the header of the first record of ifile2. If they match,

the first record of ifile2 is copied to ofile and the record of ifile1 is skipped.

Afterwards again the records of ifile1 are copied as long as the header of the

record does not mach the header of the second record of ifile2. Afterwards the

same proceeding is done with the third record of ifile2, etc. If there are no

records left in ifile2 then all the remaining records of ifile1 are copied to ofile.

cat<n>

ifile1 ... ifile<n>

(“concaternate”) Concaternates the contents of the files, similar to the unix com-

mand cat. The sense of using this function instead of the unix command cat is to

let it write the protocol file (See Section 3.1 “Protocol file” on page 18) and to

start it as a child process.



 PAGE 62

4.8  Selection

sel

ifile ofile

(“select”) For selection of records. This function is good for stepping through

ifile and deciding manually for each record if it should be copied to ofile or not.

Some information is displayed about the first record. The user has now to decide,

weather this and the following records should be copied to ofile or skipped. The

user has to type in two numbers. The first gives a selection and the second is 0 for

selection should not be copied to ofile or a number not equal to 0, for example 1,

if it should be copied to ofile. The first number, which defines the selection,

could positive, zero, or negative. A positive number <n> is a relative selection, t.i.

the current record and the following <n>-1 records are selected. A zero selects all

records from the current one to the last one. A negative number -<n> is an abso-

lute selection. It selects all records from the current one to the record number <n>.

The selection is then copied or skipped, depending on the second given number,

and if not the end of ifile is reached, again information about the current record

is displayed and again the user have to select, weather this and the following

records should be copied to ofile or skipped.

selrec

ifile ofile

(“select record”) Selects all records of ifile with the record number in a given

range and copies them to ofile. If 0 is given as the last record number, then all

records from the start record to the end of ifile are copied.

selfirstrec

ifile ofile

(“select first record”) Selects the first record of ifile and copies it to ofile.



 PAGE 63

selfirstmidlastrec

ifile ofile1 ofile2 ofile3

(“select first middle last record”) The first record of ifile is copied to ofile1, the

last record of ifile is copied to ofile3, and all other records of ifile, t.i. from

then second record to the second last record, are copied to ofile2. This function is

thought to be used in connection with function seasmeans and seasavgs.

seldate

ifile ofile

(“select date”) Selects all records of ifile with the date in a given range and cop-

ies them to ofile.

selfirstdate

ifile ofile

(“select first date”) Selects all records of ifile until a record is found with

another date than the first record. This function can well be used in conjunction

with function ncode (page 41) or function showcode (page 43) as

ext ncode -selfirstdate ifile

respectively as

ext showcode -selfirstdate ifile

selfirsttime

ifile ofile

(“select first time”) Selects all records of ifile until a record is found with

another combination of date and time than the first record. This function can well

be used in conjunction with function ncode (page 41) or function showcode

(page 43) as

ext ncode -selfirsttime ifile

respectively as



 PAGE 64

ext showcode -selfirsttime ifile

selyear

ifile ofile

(“select year”) Selects all records of ifile with the year in a given range and cop-

ies them to ofile.

selmon

ifile ofile

(“select month”) Selects all records of ifile with the month in a given range and

copies them to ofile.

selseas

ifile ofile

(“select season”) Selects all records of ifile with a given season and copies them

to ofile.

selday

ifile ofile

(“select day”) Selects all records of ifile with the day in a given range and cop-

ies them to ofile.

selcode

ifile ofile

(“select code”) Selects all records of ifile with a user given code and copies

them to ofile. For selection of different codes simultaneously, see function

selcode<n> (page 65).



 PAGE 65

selfirstcode

ifile ofile

(“select first date”) Selects all records of ifile until a record is found with

another code or another date then the first record. This function can well be used

in conjunction with function nlevel (page 42) or function showlevel (page 43) as

ext nlevel -selfirstcode ifile

respectively as

ext showlevel -selfirstcode ifile

selcode<n>

ifile ofile1 ... ofile<n>

(“select code”) For each output file the user must give a code. For every output

file this function then selects all records of ifile with this code and copies them

into this output file.

sellevel

ifile ofile

(“select level”) Selects all records of ifile with the level in a given range and

copies them to ofile.

seldispo1

ifile ofile

(“select dispo #1”) Selects all records of ifile with a user given dispo #1 entry

and copies them to ofile. Because only SERVICE and LOLA format have a

dispo #1 entry, this function is only useful if the input format is SERVICE or

LOLA. The functions longinfo (page 39) and shortinfo (page 38) shows the dispo

entries if they are different to zero.



 PAGE 66

seldispo2

ifile ofile

(“select dispo #1”) Selects all records of ifile with a user given dispo #2 entry

and copies them to ofile. Because only SERVICE and LOLA format have a

dispo #2 entry, this function is only useful if the input format is SERVICE or

LOLA. The functions longinfo (page 39) and shortinfo (page 38) shows the dispo

entries if they are different to zero.

selindexbox

ifile ofile

(“select index box”) Selects a box of the rectangularly understood fields. The

field size of the records of ofile is therefore generally smaller than that of ifile.

The user has to give the indexes of the edges of the box. (Smallest index is 1.)

The index of the left edge may be greater than that of the right edge.

The next figure demonstrate the numbering: To select the bold marked box, the

user has to type in 10 for index as the left and 2 for the index as the right column

and 2 as the index of lower and 4 as the index of the upper row. In ifile the field

elements are numbered as indicated by the thin numbers, in ofile as indicated by

the thick numbers. (The numbers at the top are the indexes of the columns, that

on the left handed side are that of the rows.)

1 2 34 5

6 7 89 10

11 12 1314 15

2 3 4 ...

69 70 71 72...

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

1



 PAGE 67

(If ofile should be in GRIB format, better use function maskindexbox (page 55),

which preserves the grib information, which is necessary for computing the area

weights. The GRIB formatted output file of maskindexbox is only slightly greater

than that of selindexbox.)

sellonlatbox

ifile ofile

(“select longitude/latitude box”) Selects a box of the rectangularly understood

fields. The field size of the records of ofile is therefore generally smaller than

that of ifile. The user has to give the longitudes and latitudes of the edges of the

box. It is a good idea to choose LOLA as the output format.

(If ofile should be in GRIB format, better use function masklonlatbox (page 55),

which preserves the grib information, which is necessary for computing the area

weights. The GRIB formatted output file of masklonlatbox is only slightly greater

than that of sellonlatbox.)

selfile<m>of<n>

ifile1 ... ifile<n> ofile

(“select file”) ifile<m> is copied to ofile. See Section 3.4 “Not required output

files” on page 22 for the sense of it.

selfile<l>and<m>of<n>

ifile1 ... ifile<n> ofile1 ofile2

(“select file”) ifile<l> is copied to ofile1 and ifile<m> is copied to ofile2. See

Section 3.4 “Not required output files” on page 22 for the sense of it.



 PAGE 68

selfile<k>and<l>and<m>of<n>

ifile1 ... ifile<n> ofile1 ofile2 ofile3

(“select file”) ifile<k> is copied to ofile1 and ifile<l> is copied to ofile2 and

ifile<m> is copied to ofile3. See Section 3.4 “Not required output files” on

page 22 for the sense of it.

4.9  Missing values

setctomiss

ifile ofile

(“set constant to missing value”)

setmiss

ifile1 ifile2 ofile

(“set missing value”)

setmissc

ifile ofile

(“set missing value by constant”)

o t x,( ) i t x,( ) if i t x,( ) c≠
miss if i t x,( ) c=




=

o t x,( )
i2 t x,( ) if i1 t x,( ) miss=

i1 t x,( ) if i1 t x,( ) miss≠



=

o t x,( )
c if i1 t x,( ) miss=

i1 t x,( ) if i1 t x,( ) miss≠



=



 PAGE 69

setnotmiss

ifile1 ifile2 ofile

(“set not missing value”)

setnotmissc

ifile ofile

(“set not missing value by constant”)

countmiss

ifile ofile

(“count missing values”)

countmissr

ifile ofile

(“count missing values for each record”)

countnotmiss

ifile ofile

(“count not missing values”)

o t x,( )
i2 t x,( ) if i1 t x,( ) miss≠

miss if i1 t x,( ) miss=



=

o t x,( )
c if i1 t x,( ) miss≠

miss if i1 t x,( ) miss=



=

o 1 x,( ) # i t ′ x ′,( ) x ′ x i t ′ x ′,( ) miss=,=,{ }=

o t 1,( ) # i t ′ x ′,( ) t ′ t i t ′ x ′,( ) miss=,=,{ }=



 PAGE 70

countnotmissr

ifile ofile

(“count not missing values for each record”)

packr

ifile1 ifile2 ofile

(“pack for each record”) Every field of ofile is built only of that elements of

ifile1 where the corresponding element in the field of ifile2 is not the missing

value. It is possible to think of ifile2 as a mask. If for example the fields of ifile1

are only defined on land points with missing values at sea and only at sea, ifile1

could be packed by typing ext packr ifile ifile ofile. If the field in ifile has

also missing values at land, then another file should be used as the second argu-

ment, for example the land weight file, which has missing values at and only at

sea points.

unpackr

ifile1 ifile2 ofile

(“unpack for each record”) The field of ifile2 is scanned. Whenever a not miss-

ing value is found, an element of ifile1 is stored in the field of ofile. The ele-

ments of the fields of ifile1 are read one after another. Maybe not all of them are

used. It is possible to think of ifile2 as a mask. If packed_ifile was built by the

command

ext packr ifile ifile packed_ifile

then ofile, constructed by the command

ext size ifile | ext unpackr -chsize -packed_ifile ifile ofile

is equal to ifile.

o 1 x,( ) # i t ′ x ′,( ) x ′ x i t ′ x ′,( ) miss≠,=,{ }=

o t 1,( ) # i t ′ x ′,( ) t ′ t i t ′ x ′,( ) miss≠,=,{ }=



 PAGE 71

4.10  Sorting and ranking

sort

ifile ofile

(“sort”) Sorts for every field position the elements in ascending order. Missing

values are put to the end. After sorting it is

sortr

ifile ofile

(sort for each record) Sorts the elements of each record in ascending order. Miss-

ing values are put to the end. After sorting it is

rank

ifile ofile

(“rank”)  is the rank of  in . Equal elements

gets the same rank. For example: The ranks of  are

, because 2.3 is the greatest number, 4.4 the 2nd greatest,

5.1 the 3rd and 4th greatest number, etc.

rankr

ifile ofile

(“rank for each record”)  is the rank of  in .

Equal elements gets the same rank. For example: The ranks of

 are , because 2.3 is the greatest

number, 4.4 the 2nd greatest, 5.1 the 3rd and 4th greatest number, etc.

o t1 x,( ) o t2 x,( )< t1 t2<( ) x,∀

o t x1,( ) o t x2,( )< t x1 x2<( ),∀

o t x,( ) i t x,( ) i t ′ x ′,( ) x ′ x=,{ }

4.4 5.1 5.6 2.3 5.1 7.8, , , , ,( )

2 3.5 5 1 3.5 6, , , , ,( )

o t x,( ) i t x,( ) i t ′ x ′,( ) t ′ t=,{ }

4.4 5.1 5.6 2.3 5.1 7.8, , , , ,( ) 2 3.5 5 1 3.5 6, , , , ,( )



 PAGE 72

4.11  Arithmetic

sum

ifile ofile

(“sum”)

sum<n>

ifile1 ... ifile<n> ofile

(“sum”)

sumr

ifile ofile

(“sum for each record”)

add

ifile1 ifile2 ofile

(“add”). Identical with sum2 (sum<n> (page 72)).

addc

ifile ofile

(“add constant”)

o 1 x,( ) i t x,( )
t
∑=

o t x,( ) ij t x,( )
j 1=

n

∑=

o t 1,( ) i t x,( )
x
∑=

o t x,( ) i1 t x,( ) i2 t x,( )+=



 PAGE 73

addcc

ifile ofile

(“add complex constant”)

sub

ifile1 ifile2 ofile

(“subtract”).

subc

ifile ofile

(“subtract constant”)

subfromc

ifile ofile

(“subtract from constant”)

subcc

ifile ofile

(“subtract complex constant”)

o t x,( ) i t x,( ) c+=

o t x,( ) i t x,( ) c+=

o t x,( ) i1 t x,( ) i2– t x,( )=

o t x,( ) i t x,( ) c–=

o t x,( ) c i– t x,( )=

o t x,( ) i t x,( ) c–=



 PAGE 74

subfromcc

ifile ofile

(“subtract from complex constant”)

minus

ifile ofile

(“minus”)

mul

ifile1 ifile2 ofile

(“multiply”)

mulc

ifile ofile

(“multiply by constant”)

mulcc

ifile ofile

(“multiply by complex constant”)

o t x,( ) i t x,( ) c–=

o t x,( ) i t x,( )–=

o t x,( ) i1 t x,( ) i2 t x,( )⋅=

o t x,( ) i t x,( ) c⋅=

o t x,( ) i t x,( ) c⋅=



 PAGE 75

div

ifile1 ifile2 ofile

(“divide”)

divc

ifile ofile

(“divide by constant”)

divcc

ifile ofile

(“divide by complex constant”)

inverse

ifile ofile

(“inverse”)

mod

ifile1 ifile2 ofile

(“modulus”)

o t x,( )
i1 t x,( )
i2 t x,( )
------------------=

o t x,( ) i t x,( )
c

----------------=

o t x,( ) i t x,( )
c

----------------=

o t x,( ) 1
i t x,( )
----------------=



 PAGE 76

 has not to be an integer number.

modc

ifile ofile

(“modulus constant”)

 has not to be an integer number.

power

ifile1 ifile2 ofile

(“power”)

4.12  Maximum and Minimum

max

ifile ofile

(“maximum”)

o t x,( )

i1 t x,( )
i2 t x,( )
------------------ i2 t x,( ) if

i1 t x,( ) miss≠ ∧

i2 t x,( ) miss≠ i2 t x,( ) 0≠∧

miss if
i1 t x,( ) miss= ∨

i2 t x,( ) miss i2 t x,( ) 0≠∨=







=

i2 t x,( )

o t x,( )
i1 t x,( )

c
------------------ c if i t x,( ) miss≠ c miss≠ c 0≠∧ ∧

miss if i t x,( ) miss= c 0= c 0=∨ ∨





=

c

o t x,( ) i1 t x,( )( ) i2 t x,( ) if i1 t x,( ) 0 i2 t x,( ) 0≥∧>

miss if i1 t x,( ) 0 i2 t x,( ) 0<∨≤



=

o 1 x,( ) max i t ′ x ′,( ) x ′ x=,{ }=



 PAGE 77

max<n>

ifile1... ifile<n> ofile

(“maximum”)

maxr

ifile ofile

(“maximum for each record”)

maxabsdiffr

ifile1 ifile2 ofile

(“maximum of absolute differences for each record”)

This function can be used for comparison of the records of ifile1 and ifile2.

yearmaxs

ifile ofile

(“yearly maximum series”) For every adjacent sequence  of records of

the same year it is

o t x,( ) max i1 t x,( ) … in t x,( ), ,{ }=

o t 1,( ) max i t ′ x ′,( ) t ′ t=,{ }=

o t 1,( ) max i1 t ′ x ′,( ) i2 t ′ x ′,( )– t ′ t=,{ }=

t1 … tn, ,

o t x,( ) max i t ′ x,( ) t1 t ′ tn≤<,{ }=



 PAGE 78

monmaxs

ifile ofile

(“monthly maximum series”) For every adjacent sequence  of records of

the same year and month it is

daymaxs

ifile ofile

(“daily maximum series”) For every adjacent sequence  of records of

the same year, month, and day it is

min

ifile ofile

(“minimum”)

min<n>

ifile1... ifile<n> ofile

(“minimum”)

t1 … tn, ,

o t x,( ) max i t ′ x,( ) t1 t ′ tn≤<,{ }=

t1 … tn, ,

o t x,( ) max i t ′ x,( ) t1 t ′ tn≤<,{ }=

o 1 x,( ) min i t ′ x ′,( ) x ′ x=,{ }=

o t x,( ) min i1 t x,( ) … in t x,( ), ,{ }=



 PAGE 79

minr

ifile ofile

(“minimum for each record”)

yearmins

ifile ofile

(“yearly minimum series”) For every adjacent sequence  of records of

the same year it is

monmins

ifile ofile

(“monthly minimum series”) For every adjacent sequence  of records of

the same year and month it is

daymins

ifile ofile

(“daily minimum series”) For every adjacent sequence  of records of the

same year, month, and day it is

o t 1,( ) min i t ′ x ′,( ) t ′ t=,{ }=

t1 … tn, ,

o t x,( ) min i t ′ x,( ) t1 t ′ tn≤<,{ }=

t1 … tn, ,

o t x,( ) min i t ′ x,( ) t1 t ′ tn≤<,{ }=

t1 … tn, ,

o t x,( ) min i t ′ x,( ) t1 t ′ tn≤<,{ }=



 PAGE 80

4.13  Mathematical functions

sign

ifile ofile

(“sign”)

exp

ifile ofile

(“exp”)

log

ifile ofile

(“log”)

log10

ifile ofile

(“log base 10”)

o t x,( )

1 if i t x,( ) 0>
0 if i t x,( ) 0=

1– if i t x,( ) 0<
miss if i t x,( ) miss=







=

o t x,( ) ei t x,( )=

o t x,( ) i t x,( )( )log=

o t x,( ) log10 i t x,( )( )=



 PAGE 81

sin

ifile ofile

(“sin”)

cos

ifile ofile

(“cos”)

tan

ifile ofile

(“tan”)

asin

ifile ofile

(“asin”)

acos

ifile ofile

(“acos”)

o t x,( ) i t x,( )( )sin=

o t x,( ) i t x,( )( )cos=

o t x,( ) i t x,( )( )tan=

o t x,( ) i t x,( )( )asin=

o t x,( ) i t x,( )( )acos=



 PAGE 82

atan

ifile ofile

(“atan”)

atan2

ifile1 ifile2 ofile

(“atan2”)

with  or

conj

ifile ofile

(“complex conjugate”)

re

ifile ofile

(“real part”)

im

ifile ofile

(“imaginary part”)

o t x,( ) i t x,( )( )atan=

o t x,( ) atan2 i1 t x,( ) i2 t x,( ),( )=

atan2 0 0,( ) 0= atan2 0 0,( ) π±=

o t x,( ) i* t x,( )=

o t x,( ) Re i t x,( )( )=

o t x,( ) Im i t x,( )( )=



 PAGE 83

arg

ifile ofile

(“argument”) Computes the argument or phase of the complex numbers.

retocomplex

ifile ofile

(“real to complex”)

imtocomplex

ifile ofile

(“imaginary to complex”)

recttocomplex

ifile1 ifile2 ofile

(“rectangular to complex”)

complextorect

ifile ofile1 ofile2

(“complex to rectangular”)

o t x,( ) arg i t x,( )( )=

o t x,( ) i t x,( )=

o t x,( ) i i t x,( )⋅=

o t x,( ) i t x,( ) i i2 t x,( )⋅+=

o1 t x,( ) Re i t x,( )( )=

o2 t x,( ) Im i t x,( )( )=



 PAGE 84

poltocomplex

ifile1 ifile2 ofile

(“polar to complex”)

complextopol

ifile ofile1 ofile2

(“complex to polar”)

4.14  Comparisons and Logic

A value not equal to zero is treated as “true”, zero is treated as “false”.

eq

ifile1 ifile2 ofile

(“equal”)

eqc

ifile ofile

(“equal constant”)

o t x,( ) i1 t x,( ) ei i2 t x,( )⋅=

o1 t x,( ) i t x,( )=

o2 t x,( ) arg i t x,( )( )=

o t x,( )
1 if i1 t x,( ) i2 t x,( ), miss≠ i1 t x,( ) i2 t x,( )=∧

0 if i1 t x,( ) i2 t x,( ), miss≠ i1 t x,( ) i2 t x,( )≠∧

miss if i1 t x,( ) miss i2 t x,( ) miss=∨=





=



 PAGE 85

neq

ifile1 ifile2 ofile

(“not equal”)

nec

ifile ofile

(“not equal constant”)

le

ifile1 ifile2 ofile

(“lower equal”)

o t x,( )
1 if i1 t x,( ) c, miss≠ i1 t x,( ) c=∧

0 if i1 t x,( ) c, miss≠ i1 t x,( ) c≠∧

miss if i1 t x,( ) miss c miss=∨=





=

o t x,( )

1 if i1 t x,( ) i2 t x,( ), miss≠ i1 t x,( ) i2 t x,( )≠∧

0 if i1 t x,( ) i2 t x,( ), miss≠ i1 t x,( ) i=
2

t x,( )∧

miss if i1 t x,( ) miss i2 t x,( ) miss=∨=





=

o t x,( )
1 if i1 t x,( ) c, miss≠ i1 t x,( ) c≠∧

0 if i1 t x,( ) c, miss≠ i1 t x,( ) c=∧

miss if i1 t x,( ) miss c miss=∨=





=

o t x,( )
1 if i1 t x,( ) i2 t x,( ), miss≠ i1 t x,( ) i2 t x,( )≤∧

0 if i1 t x,( ) i2 t x,( ), miss≠ i1 t x,( ) i2 t x,( )>∧

miss if i1 t x,( ) miss i2 t x,( ) miss=∨=





=



 PAGE 86

lec

ifile ofile

(“lower equal constant”)

lt

ifile1 ifile2 ofile

(“lower than”)

ltc

ifile ofile

(“lower than constant”)

ge

ifile1 ifile2 ofile

(“greater equal”)

o t x,( )
1 if i1 t x,( ) c, miss≠ i1 t x,( ) c≤∧

0 if i1 t x,( ) c, miss≠ i1 t x,( ) c>∧

miss if i1 t x,( ) miss c miss=∨=





=

o t x,( )
1 if i1 t x,( ) i2 t x,( ), miss≠ i1 t x,( ) i2 t x,( )<∧

0 if i1 t x,( ) i2 t x,( ), miss≠ i1 t x,( ) i2 t x,( )≥∧

miss if i1 t x,( ) miss i2 t x,( ) miss=∨=





=

o t x,( )
1 if i1 t x,( ) c, miss≠ i1 t x,( ) c<∧

0 if i1 t x,( ) c, miss≠ i1 t x,( ) c≥∧

miss if i1 t x,( ) miss c miss=∨=





=



 PAGE 87

gec

ifile ofile

(“equal constant”)

gt

ifile1 ifile2 ofile

(“greater than”)

gtc

ifile ofile

(“greater than constant”)

o t x,( )
1 if i1 t x,( ) i2 t x,( ), miss≠ i1 t x,( ) i2 t x,( )≥∧

0 if i1 t x,( ) i2 t x,( ), miss≠ i1 t x,( ) i2 t x,( )<∧

miss if i1 t x,( ) miss i2 t x,( ) miss=∨=





=

o t x,( )
1 if i1 t x,( ) c, miss≠ i1 t x,( ) c≥∧

0 if i1 t x,( ) c, miss≠ i1 t x,( ) c<∧

miss if i1 t x,( ) miss c miss=∨=





=

o t x,( )
1 if i1 t x,( ) i2 t x,( ), miss≠ i1 t x,( ) i2 t x,( )>∧

0 if i1 t x,( ) i2 t x,( ), miss≠ i1 t x,( ) i2 t x,( )≤∧

miss if i1 t x,( ) miss i2 t x,( ) miss=∨=





=

o t x,( )
1 if i1 t x,( ) c, miss≠ i1 t x,( ) c>∧

0 if i1 t x,( ) c, miss≠ i1 t x,( ) c≤∧

miss if i1 t x,( ) miss c miss=∨=





=



 PAGE 88

and

ifile1 ifile2 ofile

(“and”)

The following table, which must be read as described in Section 2.3 “Missing

values” on page 14, describes the use of the missing value:

(The result is undefined if the missing value is set to 0.)

or

ifile1 ifile2 ofile

(“or”)

and 0 b,b≠0 miss

0 0 0 0

a,a≠0 0 1 miss

miss 0 miss miss

o t x,( )

0 if i1 t x,( ) 0= i2 t x,( ) 0=∨

1 if
i1 t x,( ) 0≠ i1 t x,( ) miss≠∧

i2 t x,( ) 0≠ i∧
2

t x,( ) miss≠∧



miss if
i1 t x,( ) 0≠ i2 t x,( ) miss=∧

i1 t x,( ) miss= i∧
2

t x,( ) 0≠∨















=

o t x,( )

0 if i1 t x,( ) 0= i2 t x,( ) 0=∧

1 if
i1 t x,( ) 0≠ i1 t x,( ) miss≠∧

i2 t x,( ) 0≠ i∧
2

t x,( ) miss≠∨



miss if

i1 t x,( ) 0= i2 t x,( ) miss=∧

i1 t x,( ) miss= i∧
2

t x,( ) 0=∨

i1 t x,( ) miss= i∧
2

t x,( ) miss=∨



















=



 PAGE 89

The following table, which must be read as described in Section 2.3 “Missing

values” on page 14, describes the use of the missing value:

(The result is undefined if the missing value is set to 0.)

not

ifile ofile

(“not”)

(The result is undefined if the missing value is set to 0.)

4.15  Conditions

A value not equal to zero is treated as “true”, zero is treated as “false”. Typically the

condition, which is in all functions of this section the first input file, is substituted by an

internal pipe. For example, a command to store the differences of the two files ifile1

and ifile2 in ofile, but only where the differences are significant, could look like

ext ifthen -diff1test ifile1 ifile2 -sub -ifile1 -ifile2 ofile

ifthen

ifile1 ifile2 ofile

(“if ifile1 then ifile2”)

or 0 b,b≠0 miss

0 0 1 miss

a,a≠0 1 1 1

miss miss 1 miss

o t x,( )
0 if i t x,( ) 0≠ i t x,( ) miss≠∧
1 if i t x,( ) 0=

miss if i t x,( ) miss=





=

o t x,( )
i2 t x,( ) if i1 t x,( ) miss≠ i1 t x,( ) 0≠∧

miss if i1 t x,( ) miss= i1 t x,( ) 0=∨



=



 PAGE 90

ifthenc

ifile ofile

(“if ifile then constant”)

ifnotthen

ifile1 ifile2 ofile

(“if not ifile1 then ifile2”)

ifnotthenc

ifile ofile

(“if not ifile then constant”)

ifthenelse

ifile1 ifile2 ifile3 ofile

(“if ifile1 then ifile2 else ifile3”)

o t x,( )
c if i1 t x,( ) miss≠ i1 t x,( ) 0≠∧

miss if i1 t x,( ) miss= i1 t x,( ) 0=∨



=

o t x,( )
i2 t x,( ) if i1 t x,( ) miss≠ i1 t x,( ) 0=∧

miss if i1 t x,( ) miss= i1 t x,( ) 0≠∨



=

o t x,( )
c if i1 t x,( ) miss≠ i1 t x,( ) 0=∧

miss if i1 t x,( ) miss= i1 t x,( ) 0≠∨



=

o t x,( )
i2 t x,( ) if i1 t x,( ) miss≠ i1 t x,( ) 0≠∧

i3 t x,( ) if i1 t x,( ) miss≠ i1 t x,( ) 0=∧

miss if i1 t x,( ) miss=





=



 PAGE 91

ifthenelsec

ifile1 ifile2 ofile

(“if ifile1 then ifile2 else constant”)

ifthencelse

ifile1 ifile2 ofile

(“if ifile1 then constant else ifile2”)

ifthencelsec

ifile1 ofile

(“if ifile then constant #1 else constant #2”)

4.16  Geometry

dotprod

ifile1 ifile2 ofile

(“dotproduct”)

o t x,( )
i2 t x,( ) if i1 t x,( ) miss≠ i1 t x,( ) 0≠∧

c if i1 t x,( ) miss≠ i1 t x,( ) 0=∧

miss if i1 t x,( ) miss=





=

o t x,( )
c if i1 t x,( ) miss≠ i1 t x,( ) 0≠∧

i2 t x,( ) if i1 t x,( ) miss≠ i1 t x,( ) 0=∧

miss if i1 t x,( ) miss=





=

o t x,( )
c1 if i1 t x,( ) miss≠ i1 t x,( ) 0≠∧

c2 if i1 t x,( ) miss≠ i1 t x,( ) 0=∧

miss if i1 t x,( ) miss=





=



 PAGE 92

dotprodr

ifile1 ifile2 ofile

(“dotproduct for each record”)

where  are the area weights obtained by the input records as

described in the first paragraph of Section 3.7 “The concept of area weights” on

page 27.

dotprodrw

ifile1 ifile2 ifile3 ofile

(“dotproduct for each record (using a weight file)”)

ifile3 can be understood as a weight file, see Section 3.7 “The concept of area

weights” on page 27.

norm

ifile ofile

(“norm”)

o 1 x,( ) i1 t x,( ) i2 t x,( )
t
∑=

o t 1,( ) w t x ′,( )
x ′
∑ 

  1–
w t x,( ) i1 t x,( ) i2 t x,( )

x
∑=

w t ′ x ′,( ) t ′ t=,{ }

o t 1,( ) i3 x t,( )
x i3 x t,( ) miss≠,

∑ 
  1–

i3 x t,( ) i
1

t x,( ) i2 t x,( )
x i3 x t,( ) miss≠,

∑=

o 1 x,( ) i x t,( ) 2

t
∑=



 PAGE 93

normr

ifile ofile

(“norm for each record”)

where  are the area weights obtained by the input records as

described in the first paragraph of Section 3.7 “The concept of area weights” on

page 27.

normrw

ifile1 ifile2 ofile

(“norm for each record (using a weight file)”)

ifile2 can be understood as a weight file, see Section 3.7 “The concept of area

weights” on page 27.

dist

ifile1 ifile2 ofile

(“distance”)

distr

ifile1 ifile2 ofile

(“distance for each record”)

o t 1,( ) w t x ′,( )
x ′
∑ 

  1–
w t x,( ) i x t,( ) 2

x
∑=

w t ′ x ′,( ) t ′ t=,{ }

o t 1,( ) i2 x t,( )
x i2 x t,( ) miss≠,

∑ 
  1–

i2 x t,( ) i
1

x t,( ) 2

x i2 x t,( ) miss≠,
∑=

o 1 x,( ) i2 t x,( ) i1 t x,( )–( ) 2

t
∑=

o t 1,( ) w t x ′,( )
x ′
∑ 

  1–
w t x,( ) i2 t x,( ) i1 t x,( )–( ) 2

x
∑=



 PAGE 94

where  are the area weights obtained by the input records as

described in the first paragraph of Section 3.7 “The concept of area weights” on

page 27.

distrw

ifile1 ifile2 ifile3 ofile

(“distance for each record (using a weight file)”)

ifile3 can be understood as a weight file, see Section 3.7 “The concept of area

weights” on page 27.

rms

ifile1 ifile2 ofile

(“root mean square”) Identical to function dist (page 93).

rmsr

ifile1 ifile2 ofile

(“root mean square for each record”) Identical to function distr (page 93).

rmsrw

ifile1 ifile2 ifile3 ofile

(“root mean square for each record (using a weight file)”) Identical to function

distrw (page 94).

normdotprod

ifile1 ifile2 ofile

(“normalized dotproduct”) The normalized dotproduct is the arcus cosine of the

angle between ifile1 and ifile2. With

w t ′ x ′,( ) t ′ t=,{ }

o t 1,( ) i3 x t,( )
x i3 x t,( ) miss≠,

∑ 
  1–

i3 t x,( ) i2 t x,( ) i1 t x,( )–( ) 2

x i3 x t,( ) miss≠,
∑=



 PAGE 95

it is

normdotprodr

ifile1 ifile2 ofile

(“normalized dotproduct for each record”) The normalized dotproduct is the

arcus cosine of the angle between ifile1 and ifile2. With

it is

where  are the area weights obtained by the input records as

described in the first paragraph of Section 3.7 “The concept of area weights” on

page 27.

normdotprodrw

ifile1 ifile2 ifile3 ofile

(“normalized dotproduct for each record (using a weight file)”) The normalized

dotproduct is the arcus cosine of the angle between ifile1 and ifile2. With

S x( ) t i1 t x,( ) miss≠ i2 t x,( ) miss≠∧,{ }=

o 1 x,( )
i1 t x,( ) i2 t x,( )

t S x( )∈
∑

i1 t x,( ) 2

t S x( )∈
∑ i2 t x,( ) 2

t S x( )∈
∑

---------------------------------------------------------------------------------=

S t( ) x i1 t x,( ) miss≠ i2 t x,( ) miss≠∧,{ }=

o t 1,( )
w t x,( ) i1 t x,( ) i2 t x,( )

x S t( )∈
∑

w t x,( ) i1 t x,( ) 2

x S t( )∈
∑ w t x,( ) i2 t x,( ) 2

x S t( )∈
∑

----------------------------------------------------------------------------------------------------------------------=

w t ′ x ′,( ) t ′ t=,{ }

S t( ) x i1 t x,( ) miss≠ i2 t x,( ) miss≠ i3 t x,( ) miss≠∧ ∧,{ }=



 PAGE 96

it is

ifile3 can be understood as a weight file, see Section 3.7 “The concept of area

weights” on page 27.

4.17  Means and averages

In this program there is the different notion of “mean” and “average” to distinguish two

different kinds of treatment of missing values: While computing the mean, only the not

missing values are considered to belong to the sample with the side effect of a probably

reduced sample size. Computing the average is just adding the sample members and

divide the result by the sample size. For example, the mean of 1, 2, miss, and 3 is

(1+2+3)/3=2, whereas the average is (1+2+miss+3)/4=miss/4=miss. If there are no

missing values in the sample, the average and the mean are identical.

In this chapter the abbreviations as in the following table are used:

mean

ifile ofile

(“mean”)

 resp.

 resp.
weighted by

o t 1,( )
i3 t x,( ) i

1
t x,( ) i2 t x,( )

x S t( )∈
∑

i3 t x,( ) i
1

t x,( ) 2

x S t( )∈
∑ i3 t x,( ) i

2
t x,( ) 2

x S t( )∈
∑

-----------------------------------------------------------------------------------------------------------------------=

mean avg n 1– xii 1=
n∑

mean avg

wi i 1 … n, ,=,{ }
wj

j 1=

n

∑ 
 
  1–

wixii 1=
n∑

o 1 x,( ) mean i t ′ x ′,( ) x ′ x=,{ }=



 PAGE 97

avg

ifile ofile

(“average”)

mean<n>

ifile1 ... ifile<n> ofile

(“mean”)

avg<n>

ifile1 ... ifile<n> ofile

(“average”)

meanr

ifile ofile

(“mean for each record”)

weighted by area weights obtained by the input record as described in the first

paragraph of Section 3.7 “The concept of area weights” on page 27.

meanrw

ifile1 ifile2 ofile

(“mean for each record (using a weight file)”)

o 1 x,( ) avg i t ′ x ′,( ) x ′ x=,{ }=

o t x,( ) mean i1 t x,( ) … in t x,( ), ,{ }=

o t x,( ) avg i1 t x,( ) … in t x,( ), ,{ }=

o t 1,( ) mean i t ′ x ′,( ) t ′ t=,{ }=



 PAGE 98

weighted by .

If ifile1 is a GRIB file and constant area weights should be used instead of the

area weights which correspond to the grid described in the GRIB record, use

-const,1 instead of ifile2. (For an explanation see function const (page 50) and

Section 3.2 “Combining different functions” on page 19 and Section 3.3

“Advanced standard input” on page 21.)

avgr

ifile ofile

(“average for each record”)

weighted by area weights obtained by the input record as described in the first

paragraph of Section 3.7 “The concept of area weights” on page 27.

avgrw

ifile1 ifile2 ofile

(“average for each record (using a weight file)”)

weighted by .

Missing values in the weight file do not lead automatically to a missing value

average. Only those points are averaged, where the weight is not the missing

value.

If ifile1 is a GRIB file and constant area weights should be used instead of the

area weights which correspond to the grid described in the GRIB record, use

-const,1 instead of ifile2. (For an explanation see function const (page 50) and

o t 1,( ) mean i1 t ′ x ′,( ) t ′ t=,{ }=

i2 t ′ x ′,( ) t ′ t=,{ }

o t 1,( ) avg i t ′ x ′,( ) t ′ t=,{ }=

o t 1,( ) avg i1 t ′ x ′,( ) t ′ t=,{ }=

i2 t ′ x ′,( ) t ′ t=,{ }



 PAGE 99

Section 3.2 “Combining different functions” on page 19 and Section 3.3

“Advanced standard input” on page 21.)

anom

ifile ofile

(“anomaly”)

This function has to keep the fields of all records concurrently in the memory. If

not enough memory is available, the user should use the functions mean (page 96)

and sub (page 73).

anomr

ifile ofile

(“anomaly for each record”)

where the mean is weighted by area weights obtained by the input record as

described in the first paragraph of Section 3.7 “The concept of area weights” on

page 27.

anomrw

ifile ofile

(“anomaly for each record (using a weight file)”)

where the mean is weighted by .

o t x,( ) i t x,( ) mean i t ′ x ′,( ) x ′ x=,{ }–=

o t x,( ) i t x,( ) mean i t ′ x ′,( ) x ′ x=,{ }–=

o t x,( ) i t x,( ) mean i t ′ x ′,( ) t ′ t=,{ }–=

i2 t ′ x ′,( ) t ′ t=,{ }



 PAGE 100

zonmean

ifile ofile

(“zonal mean”) For every latitude the mean over all longitudes is computed.

zonavg

ifile ofile

(“zonal average”) For every latitude the average over all longitudes is computed.

mermean

ifile ofile

(“meridial mean”) For every longitude the mean over all latitudes is computed.

meravg

ifile ofile

(“meridial average”) For every longitude the average over all latitudes is com-

puted.

runmeans

ifile ofile

(“running mean series”)

runavgs

ifile ofile

(“running average series”)

o t x,( ) mean i t x,( ) i t 1+ x,( ) … i t c 1–+ x,( ), , ,{ }=

o t x,( ) avg i t x,( ) i t 1+ x,( ) … i t c 1–+ x,( ), , ,{ }=



 PAGE 101

daymeans

ifile ofile

(“daily mean series”) For every adjacent sequence  of records of the

same year, month, and day it is

dayavgs

ifile ofile

(“daily average series”) For every adjacent sequence  of records of the

same year, month, and day it is

5daymeans

ifile ofile

(“5-day-interval mean series”) The days of a month are thought as grouped to 5-

day-intervals. These intervals are day 01 to day 05, day 06 to day 10, day 11 to

day 15, etc. For every adjacent sequence  of records of the same year,

month, and 5-day-interval it is

5dayavgs

ifile ofile

(“5-day-interval average series”) The days of a month are thought as grouped to

5-day-intervals. These intervals are day 01 to day 05, day 06 to day 10, day 11 to

day 15, etc. For every adjacent sequence  of records of the same year,

month, and 5-day-interval it is

t1 … tn, ,

o t x,( ) mean i t ′ x,( ) t1 t ′ tn≤<,{ }=

t1 … tn, ,

o t x,( ) avg i t ′ x,( ) t1 t ′ tn≤<,{ }=

t1 … tn, ,

o t x,( ) mean i t ′ x,( ) t1 t ′ tn≤<,{ }=

t1 … tn, ,



 PAGE 102

10daymeans

ifile ofile

(“10-day mean series”) The days of a month are thought as grouped to 10-day-

intervals. These intervals are day 01 to day 10, day 11 to day 20, and day 21 to

day 30, etc. For every adjacent sequence  of records of the same year,

month, and 10-day-interval it is

10dayavgs

ifile ofile

(“10-day average series”) The days of a month are thought as grouped to 10-day-

intervals. These intervals are day 01 to day 10, day 11 to day 20, and day 21 to

day 30, etc. For every adjacent sequence  of records of the same year,

month, and 10-day-interval it is

monmean

ifile ofile

(“monthly mean”)

ofile consists always of exactly 12 records.

o t x,( ) avg i t ′ x,( ) t1 t ′ tn≤<,{ }=

t1 … tn, ,

o t x,( ) mean i t ′ x,( ) t1 t ′ tn≤<,{ }=

t1 … tn, ,

o t x,( ) avg i t ′ x,( ) t1 t ′ tn≤<,{ }=

o 01 x,( ) mean i t x,( ) month i t( )( ) 01=,{ }=

…
o 12 x,( ) mean i t x,( ) month i t( )( ) 12=,{ }=



 PAGE 103

monavg

ifile ofile

(“monthly average”)

ofile consists always of exactly 12 records.

monmeans

ifile ofile

(“monthly mean series”) For every adjacent sequence  of records of the

same year and month it is

monavgs

ifile ofile

(“monthly average series”) For every adjacent sequence  of records of

the same year and month it is

seasmean

ifile ofile

(“seasonal mean”)

o 01 x,( ) avg i t x,( ) month i t( )( ) 01=,{ }=

…
o 12 x,( ) avg i t x,( ) month i t( )( ) 12=,{ }=

t1 … tn, ,

o t x,( ) mean i t ′ x,( ) t1 t ′ tn≤<,{ }=

t1 … tn, ,

o t x,( ) avg i t ′ x,( ) t1 t ′ tn≤<,{ }=

o 01 x,( ) mean i t x,( ) season i t( )( ) 13=,{ }=

…
o 04 x,( ) mean i t x,( ) season i t( )( ) 16=,{ }=



 PAGE 104

ofile consists always of exactly 4 records.

seasavg

ifile ofile

(“seasonal average”)

ofile consists always of exactly 4 records.

seasmeans

ifile ofile

(“seasonal mean series”) For every adjacent sequence  of records of the

same year and season, where december belongs to the northern hemispheric win-

ter of the next year, it is

Be careful about the first and the last record, they may be incorrect DJF means.

See function selfirstmidlastrec (page 63) for selecting the second to the last sec-

ond record.

See also functions rseasmeans (page 104), cseasmeans (page 105), rcseasmeans

(page 106).

rseasmeans

ifile ofile

(“robust seasonal mean series”) For every adjacent sequence  of records

of the same season, it is

o 01 x,( ) avg i t x,( ) season i t( )( ) 13=,{ }=

…
o 04 x,( ) avg i t x,( ) season i t( )( ) 16=,{ }=

t1 … tn, ,

o t x,( ) mean i t ′ x,( ) t1 t ′ tn≤<,{ }=

t1 … tn, ,

o t x,( ) mean i t ′ x,( ) t1 t ′ tn≤<,{ }=



 PAGE 105

This function is robust in the sense that it ignores the year. If for example month

12 of year 255 is followed by month 1 of year 0, then both month are considered

as belonging to the same season.

Be careful about the first and the last record, they may be incorrect DJF means.

See function selfirstmidlastrec (page 63) for selecting the second to the last sec-

ond record.

See also functions seasmeans (page 104), cseasmeans (page 105), rcseasmeans

(page 106).

cseasmeans

ifile ofile

(“controlled seasonal mean series”) For every adjacent sequence  of

records of the same year and season, where december belongs to the northern

hemispheric winter of the next year, it is

This function is controlled in the sense, that only those seasonal means are writ-

ten out, which have the same number of records for every month of the season. If

for example the first three records of a ifile are monthly means of January, Feb-

ruary, and March, then the mean of January and February is not written out,

because there is no record for December.

See also functions seasmeans (page 104), rseasmeans (page 104), crseasmeans

(page 105).

crseasmeans

ifile ofile

(“controlled robust seasonal mean series”) For every adjacent sequence

of records of the same year and season, where december belongs to the northern

hemispheric winter of the next year, it is

t1 … tn, ,

o t x,( ) mean i t ′ x,( ) t1 t ′ tn≤<,{ }=

t1 … tn, ,



 PAGE 106

This function is controlled in the sense, that only those seasonal means are writ-

ten out, which have the same number of records for every month of the season. If

for example the first three records of a ifile are monthly means of January, Feb-

ruary, and March, then the mean of January and February is not written out,

because there is no record for December.

This function is robust in the sense that it ignores the year. If for example month

12 of year 255 is followed by month 1 of year 0, then both month are considered

as belonging to the same season.

See also function seasmeans (page 104), rseasmeans (page 104), cseasmeans

(page 105).

rcseasmeans

ifile ofile

(“robust controlled seasonal mean series”) This function is identical to function

crseasmeans (page 105).

seasavgs

ifile ofile

(“seasonal average series”) For every adjacent sequence  of records of

the same year and season, where december belongs to the northern hemispheric

winter of the next year, it is

Be careful about the first and the last record, they may be incorrect DJF averages.

See function selfirstmidlastrec (page 63) for selecting the second to the last sec-

ond record.

o t x,( ) mean i t ′ x,( ) t1 t ′ tn≤<,{ }=

t1 … tn, ,

o t x,( ) avg i t ′ x,( ) t1 t ′ tn≤<,{ }=



 PAGE 107

See also functions rseasavgs (page 107), cseasavgs (page 107), crseasavgs

(page 108).

rseasavgs

ifile ofile

(“robust seasonal mean series”) For every adjacent sequence  of records

of the same season, it is

This function is robust in the sense that it ignores the year. If for example month

12 of year 255 is followed by month 1 of year 0, then both month are considered

as belonging to the same season.

Be careful about the first and the last record, they may be incorrect DJF averages.

See function selfirstmidlastrec (page 63) for selecting the second to the last sec-

ond record.

See also functions seasavgs (page 106), cseasavgs (page 107), crseasavgs

(page 108).

cseasavgs

ifile ofile

(“controlled seasonal mean series”) For every adjacent sequence  of

records of the same year and season, where december belongs to the northern

hemispheric winter of the next year, it is

This function is controlled in the sense, that only those seasonal averages are

written out, which have the same number of records for every month of the sea-

son. If for example the first three records of a ifile are monthly means of Janu-

t1 … tn, ,

o t x,( ) avg i t ′ x,( ) t1 t ′ tn≤<,{ }=

t1 … tn, ,

o t x,( ) avg i t ′ x,( ) t1 t ′ tn≤<,{ }=



 PAGE 108

ary, February, and March, then the average of January and February is not written

out, because there is no record for December.

See also functions seasavgs (page 106), rseasavgs (page 107), crseasavgs

(page 108)).

crseasavgs

ifile ofile

(“controlled robust seasonal mean series”) For every adjacent sequence

of records of the same year and season, where december belongs to the northern

hemispheric winter of the next year, it is

This function is controlled in the sense, that only those seasonal averages are

written out, which have the same number of records for every month of the sea-

son. If for example the first three records of a ifile are monthly means of Janu-

ary, February, and March, then the average of January and February is not written

out, because there is no record for December.

This function is robust in the sense that it ignores the year. If for example month

12 of year 255 is followed by month 1 of year 0, then both month are considered

as belonging to the same season.

See also function seasavgs (page 106), rseasavgs (page 107), cseasavgs (page 107).

rcseasavgs

ifile ofile

(“robust controlled seasonal mean series”) This function is identical to function

crseasavgs (page 108).

t1 … tn, ,

o t x,( ) avg i t ′ x,( ) t1 t ′ tn≤<,{ }=



 PAGE 109

yearmean

ifile ofile

(“yearly mean”) Identical to function mean (page 96).

yearavg

ifile ofile

(“yearly average”) Identical to function avg (page 97).

yearmeans

ifile ofile

(“yearly mean series”) For every adjacent sequence  of records of the

same year, it is

yearavgs

ifile ofile

(“yearly average series”) For every adjacent sequence  of records of the

same year, it is

4.18  Variances, correlations, and co.

In this chapter the abbreviations as in the following table are used:

t1 … tn, ,

o t x,( ) mean i t ′ x,( ) t1 t ′ tn≤<,{ }=

t1 … tn, ,

o t x,( ) avg i t ′ x,( ) t1 t ′ tn≤<,{ }=

Var0 n 1– xi x–( ) 2
i 1=
n∑

Var1 n 1–( ) 1– xi x–( ) 2
i 1=
n∑

Covar0 n 1– xi x–( ) yi y–( )
i 1=
n∑



 PAGE 110

Only those values resp. pairs of values belong to the sample which are not the missing

value resp. which are both not the missing value.

var0

ifile ofile

(“variance [divisor was n-0]”)

 weighted by

 weighted by

 weighted by

 weighted by

 weighted by

Covar1 n 1–( ) 1– xi x–( ) yi y–( )
i 1=
n∑

Var0

wi i 1 … n, ,=,{ }
1

wj
j 1=

n

∑
--------------- wi xi

wjxj
j 1=

n

∑

wj
j 1=

n

∑
-------------------–

 
 
 
 
 
 
  2

i 1=
n∑

Var1

wi i 1 … n, ,=,{ }

wj
j 1=

n

∑

wj
j 1=

n

∑ 
 
  2

wj
2

j 1=

n

∑–

---------------------------------------------- wi xi

wjxj
j 1=

n

∑

wj
j 1=

n

∑
-------------------–

 
 
 
 
 
 
  2

i 1=
n∑

Covar0

wi i 1 … n, ,=,{ }
1

wj
j 1=

n

∑
--------------- wi xi

wjxj
j 1=

n

∑

wj
j 1=

n

∑
-------------------–

 
 
 
 
 
 
 

yi

wjyj
j 1=

n

∑

wj
j 1=

n

∑
-------------------–

 
 
 
 
 
 
 

i 1=
n∑

Covar1

wi i 1 … n, ,=,{ }

wj
j 1=

n

∑

wj
j 1=

n

∑ 
 
  2

wj
2

j 1=

n

∑–

---------------------------------------------- wi xi

wjxj
j 1=

n

∑

wj
j 1=

n

∑
-------------------–

 
 
 
 
 
 
 

yi

wjyj
j 1=

n

∑

wj
j 1=

n

∑
-------------------–

 
 
 
 
 
 
 

i 1=
n∑

Cor

wi i 1 … n, ,=,{ }

wi xi

wjxj
j 1=

n

∑

wj
j 1=

n

∑
-------------------–

 
 
 
 
 
 
 

yi

wjyj
j 1=

n

∑

wj
j 1=

n

∑
-------------------–

 
 
 
 
 
 
 

i 1=
n∑

wi xi

wjxj
j 1=

n

∑

wj
j 1=

n

∑
-------------------–

 
 
 
 
 
 
  2

i 1=
n∑ wi yi

wjyj
j 1=

n

∑

wj
j 1=

n

∑
-------------------–

 
 
 
 
 
 
  2

i 1=
n∑

-------------------------------------------------------------------------------------------------------------------------------



 PAGE 111

var1

ifile ofile

(“variance [divisor was n-1]”)

var0r

ifile ofile

(“variance [divisor was n-0] for each record”)

weighted by area weights obtained by the input record as described in the first

paragraph of Section 3.7 “The concept of area weights” on page 27.

var0rw

ifile1 ifile2 ofile

(“variance [divisor was n-0] for each record (using a weight file)”)

weighted by .

If ifile1 is a LOLA or GRIB file and constant area weights should be used

instead of the area weights which correspond to the grid described in the LOLA

or GRIB record, use -const,1 instead of ifile2. (For an explanation see function

const (page 50) and Section 3.2 “Combining different functions” on page 19 and

Section 3.3 “Advanced standard input” on page 21.)

o 1 x,( ) Var0 i t ′ x ′,( ) x ′ x=,{ }=

o 1 x,( ) Var1 i t ′ x ′,( ) x ′ x=,{ }=

o t 1,( ) Var0 i t ′ x ′,( ) t ′ t=,{ }=

o t 1,( ) Var0 i1 t ′ x ′,( ) t ′ t=,{ }=

i2 t ′ x ′,( ) t ′ t=,{ }



 PAGE 112

var1r

ifile ofile

(“variance [divisor was n-1] for each record”)

weighted by area weights obtained by the input record as described in the first

paragraph of Section 3.7 “The concept of area weights” on page 27.

var1rw

ifile1 ifile2 ofile

(“variance [divisor was n-1] for each record (using a weight file)”)

weighted by .

If ifile1 is a LOLA or GRIB file and constant area weights should be used

instead of the area weights which correspond to the grid described in the LOLA

or GRIB record, use -const,1 instead of ifile2. (For an explanation see function

const (page 50) and Section 3.2 “Combining different functions” on page 19 and

Section 3.3 “Advanced standard input” on page 21.)

pooledvar<n>

ifile1 ... ifile<n> ofile

(“pooled variance”) The values of the input file ifile<j> are assumed to be dis-

tributed as  with user given  and unknown . This function

computes the pooled variance . For every field element  only those records

belong to the sample , which have . It is

o t 1,( ) Var0 i t ′ x ′,( ) t ′ t=,{ }=

o t 1,( ) Var1 i1 t ′ x ′,( ) t ′ t=,{ }=

i2 t ′ x ′,( ) t ′ t=,{ }

N aj λ jσ2,( ) λ j σ2

σ2 x t

Sj x( ) ij t x,( ) miss≠

o 1 x,( ) 1

#Sj x( )
j 1=

n

∑ n–

------------------------------------ λ j
1– ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑

j 1=

n

∑=



 PAGE 113

stddev0

ifile ofile

(“standard deviation [divisor was n-0]”)

stddev1

ifile ofile

(“standard deviation [divisor was n-1]”)

stddev0r

ifile ofile

(“standard deviation [divisor was n-0] for each record”)

weighted by area weights obtained by the input record as described in the first

paragraph of Section 3.7 “The concept of area weights” on page 27.

stddev0rw

ifile1 ifile2 ofile

(“standard deviation [divisor was n-0] for each record (using a weight file)”)

weighted by .

If ifile1 is a LOLA or GRIB file and constant area weights should be used

instead of the area weights which correspond to the grid described in the LOLA

or GRIB record, use -const,1 instead of ifile2. (For an explanation see function

o 1 x,( ) Var0 i t ′ x ′,( ) x ′ x=,{ }=

o 1 x,( ) Var1 i t ′ x ′,( ) x ′ x=,{ }=

o t 1,( ) Var0 i t ′ x ′,( ) t ′ t=,{ }=

o t 1,( ) Var0 i1 t ′ x ′,( ) t ′ t=,{ }=

i2 t ′ x ′,( ) t ′ t=,{ }



 PAGE 114

const (page 50) and Section 3.2 “Combining different functions” on page 19 and

Section 3.3 “Advanced standard input” on page 21.)

stddev1r

ifile ofile

(“standard deviation [divisor was n-1] for each record”)

weighted by area weights obtained by the input record as described in the first

paragraph of Section 3.7 “The concept of area weights” on page 27.

stddev1rw

ifile1 ifile2 ofile

(“standard deviation [divisor was n-1] for each record (using a weight file)”)

weighted by .

If ifile1 is a LOLA or GRIB file and constant area weights should be used

instead of the area weights which correspond to the grid described in the LOLA

or GRIB record, use -const,1 instead of ifile2. (For an explanation see function

const (page 50) and Section 3.2 “Combining different functions” on page 19 and

Section 3.3 “Advanced standard input” on page 21.)

2stddev0

ifile ofile

(“2 times standard deviation [divisor was n-0]”)

o t 1,( ) Var1 i t ′ x ′,( ) t ′ t=,{ }=

o t 1,( ) Var1 i1 t ′ x ′,( ) t ′ t=,{ }=

i2 t ′ x ′,( ) t ′ t=,{ }

o 1 x,( ) 2 Var0 i t ′ x ′,( ) x ′ x=,{ }=



 PAGE 115

2stddev1

ifile ofile

(“2 times standard deviation [divisor was n-1]”)

2stddev0r

ifile ofile

(“2 times standard deviation [divisor was n-0] for each record”)

weighted by area weights obtained by the input record as described in the first

paragraph of Section 3.7 “The concept of area weights” on page 27.

2stddev0rw

ifile1 ifile2 ofile

(“2 times standard deviation [divisor was n-0] for each record (using a weight

file)”)

weighted by .

If ifile1 is a LOLA or GRIB file and constant area weights should be used

instead of the area weights which correspond to the grid described in the LOLA

or GRIB record, use -const,1 instead of ifile2. (For an explanation see function

const (page 50) and Section 3.2 “Combining different functions” on page 19 and

Section 3.3 “Advanced standard input” on page 21.)

o 1 x,( ) 2 Var1 i t ′ x ′,( ) x ′ x=,{ }=

o t 1,( ) 2 Var0 i t ′ x ′,( ) t ′ t=,{ }=

o t 1,( ) 2 Var0 i1 t ′ x ′,( ) t ′ t=,{ }=

i2 t ′ x ′,( ) t ′ t=,{ }



 PAGE 116

2stddev1r

ifile ofile

(“2 times standard deviation [divisor was n-1] for each record”)

weighted by area weights obtained by the input record as described in the first

paragraph of Section 3.7 “The concept of area weights” on page 27.

2stddev1rw

ifile1 ifile2 ofile

(“2 times standard deviation [divisor was n-1] for each record (using a weight

file)”)

weighted by .

If ifile1 is a LOLA or GRIB file and constant area weights should be used

instead of the area weights which correspond to the grid described in the LOLA

or GRIB record, use -const,1 instead of ifile2. (For an explanation see function

const (page 50) and Section 3.2 “Combining different functions” on page 19 and

Section 3.3 “Advanced standard input” on page 21.)

covar0

ifile1 ifile2 ofile

(“covariance [divisor was n-0]”)

o t 1,( ) 2 Var1 i1 t ′ x ′,( ) t ′ t=,{ }=

o t 1,( ) 2 Var1 i1 t ′ x ′,( ) t ′ t=,{ }=

i2 t ′ x ′,( ) t ′ t=,{ }

o 1 x,( ) Covar0 i1 t ′ x ′,( ) i2 t ′ x ′,( ),( ) x ′ x=,{ }=



 PAGE 117

covar1

ifile1 ifile2 ofile

(“covariance [divisor was n-1]”)

covar0r

ifile1 ifile2 ofile

(“covariance [divisor was n-0] for each record”)

weighted by area weights obtained by the input records as described in the first

paragraph of Section 3.7 “The concept of area weights” on page 27.

covar0rw

ifile1 ifile2 ifile3 ofile

(“covariance [divisor was n-0] for each record (using a weight file)”)

weighted by .

If ifile1 or ifile2 is a LOLA or GRIB file and constant area weights should be

used instead of the area weights which correspond to the grid described in the

LOLA or GRIB record, use -const,1 instead of ifile3. (For an explanation see

function const (page 50) and Section 3.2 “Combining different functions” on

page 19 and Section 3.3 “Advanced standard input” on page 21.)

o 1 x,( ) Covar1 i1 t ′ x ′,( ) i2 t ′ x ′,( ),( ) x ′ x=,{ }=

o t 1,( ) Covar0 i1 t ′ x ′,( ) i2 t ′ x ′,( ),( ) t ′ t=,{ }=

o t 1,( ) Covar0 i1 t ′ x ′,( ) i2 t ′ x ′,( ),( ) t ′ t=,{ }=

i3 t ′ x ′,( ) t ′ t=,{ }



 PAGE 118

covar1r

ifile1 ifile2 ofile

(“covariance [divisor was n-1] for each record”)

weighted by area weights obtained by the input records as described in the first

paragraph of Section 3.7 “The concept of area weights” on page 27.

covar1rw

ifile1 ifile2 ifile3 ofile

(“covariance [divisor was n-1] for each record (using a weight file)”)

weighted by .

If ifile1 or ifile2 is a LOLA or GRIB file and constant area weights should be

used instead of the area weights which correspond to the grid described in the

LOLA or GRIB record, use -const,1 instead of ifile3. (For an explanation see

function const (page 50) and Section 3.2 “Combining different functions” on

page 19 and Section 3.3 “Advanced standard input” on page 21.)

cor

ifile1 ifile2 ofile

(“correlation”)

For correlation without subtracting the mean see function normdotprod (page 94).

o t 1,( ) Covar1 i1 t ′ x ′,( ) i2 t ′ x ′,( ),( ) t ′ t=,{ }=

o t 1,( ) Covar1 i1 t ′ x ′,( ) i2 t ′ x ′,( ),( ) t ′ t=,{ }=

i3 t ′ x ′,( ) t ′ t=,{ }

o 1 x,( ) Cor i1 t ′ x ′,( ) i2 t ′ x ′,( ),( ) x ′ x=,{ }=



 PAGE 119

corr

ifile1 ifile2 ofile

(“correlation for each record”)

For every record  only those field elements  belong to the sample, which have

 and . It is

weighted by area weights obtained by the input records as described in the first

paragraph of Section 3.7 “The concept of area weights” on page 27.

For correlation without subtracting the mean see function normdotprodr (page 95).

corrw

ifile1 ifile2 ifile3 ofile

(“correlation for each record (using a weight file)”)

For every record  only those field elements  belong to the sample, which have

 and  and . Then it is

weighted by .

For correlation without subtracting the mean see function normdotprodrw

(page 95).

If ifile1 or ifile2 is a LOLA or GRIB file and constant area weights should be

used instead of the area weights which correspond to the grid described in the

LOLA or GRIB record, use -const,1 instead of ifile3. (For an explanation see

function const (page 50) and Section 3.2 “Combining different functions” on

page 19 and Section 3.3 “Advanced standard input” on page 21.)

t x

i1 t x,( ) miss≠ i2 t x,( ) miss≠

o t 1,( ) Cor i1 t ′ x ′,( ) i2 t ′ x ′,( ),( ) t ′ t=,{ }=

t x

i1 t x,( ) miss≠ i2 t x,( ) miss≠ i3 t x,( ) miss≠

o t 1,( ) Cor i1 t ′ x ′,( ) i2 t ′ x ′,( ),( ) t ′ t=,{ }=

i3 t ′ x ′,( ) t ′ t=,{ }



 PAGE 120

4.19  Regression

regres

ifile ofile

(“regression”) The values of the input file ifile are assumed to be distributed as

 with unknown , , and  and with record number . This

function estimates the parameter . For every field element  only those records

 belong to the sample , which have . It is

detrend

ifile ofile

(“detrend”) Every time series in ifile is linearly detrended. For every field ele-

ment  only those records  belong to the sample , which have

. With

and

it is

This function has to keep the fields of all records concurrently in the memory. If

not enough memory is available, the user should use the functions trend

(page 121) and subtrend (page 121).

N a bt+ σ2,( ) a b σ2 t

b x

t S x( ) i t x,( ) miss≠

o 1 x,( )
i t x,( ) 1

#S x( )
---------------- i t ′ x,( )

t ′ S x( )∈
∑– 

  t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

--------------------------------------------------------------------------------------------------------------------------------------------------------=

x t S x( )

i t x,( ) miss≠

b x( )
i t x,( ) 1

#S x( )
---------------- i t ′ x,( )

t ′ S x( )∈
∑– 

  t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

--------------------------------------------------------------------------------------------------------------------------------------------------------=

a x( ) 1
#S x( )
---------------- i t x,( )

t S x( )∈
∑ b x( ) 1

#S x( )
---------------- t

t S x( )∈
∑ 

 –=

o t x,( ) i t x,( ) a bt+( )–=



 PAGE 121

trend

ifile ofile1 ofile2

(“trend”) The values of the input file ifile are assumed to be distributed as

 with unknown , , and  and with record number . This

function estimates the parameters  and . For every field element  only those

records  belong to the sample , which have . It is

and

Thus the estimation for  is stored in ofile1 and that for  is stored in ofile2. To

subtract the trend from the data see function subtrend (page 121).

subtrend

ifile1 ifile2 ifile3 ofile

(“subtract trend”) This function is for subtracting a trend computed by the func-

tion trend (page 121). The typical function call for detrend the data in ifile and

to store the detrended data in ofile is

ext subtrend ifile -trend ifile ofile

It is

where  is the record number. (The first record has .)

N a bt+ σ2,( ) a b σ2 t

a b x

t S x( ) i t x,( ) miss≠

o2 1 x,( )
i t x,( ) 1

#S x( )
---------------- i t ′ x,( )

t ′ S x( )∈
∑– 

  t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

--------------------------------------------------------------------------------------------------------------------------------------------------------=

o1 1 x,( ) 1
#S x( )
---------------- i t x,( )

t S x( )∈
∑ o2 1 x,( ) 1

#S x( )
---------------- t

t S x( )∈
∑ 

 –=

a b

o t x,( ) i1 t x,( ) i2 t x,( ) i3 t x,( ) t⋅+( )–=

t t 1=



 PAGE 122

anomcoupl

ifile1 ifile2 ofile

(“anomaly coupling”) If a forcing in stored in ifile1 drives the quantity in ifile2,

then with this function the linear regression between both quantities can be com-

puted.

anomcouplr

ifile1 ifile2 ofile

(“anomaly coupling for each record”) If a forcing in stored in ifile1 drives the

quantity in ifile2, then with this function the linear regression between both

quantities can be computed. For every record  only those field elements

belong to the sample, which have  and . It is

weighted by area weights obtained by the input records as described in the first

paragraph of Section 3.7 “The concept of area weights” on page 27.

anomcouplrw

ifile1 ifile2 ifile3 ofile

(“anomaly coupling for each record (using a weight file)”) If a forcing in stored

in ifile1 drives the quantity in ifile2, then with this function the linear regression

between both quantities can be computed. For every record  only those field ele-

ments  belong to the sample, which have  and

and . Then it is

o 1 x,( )
Covar0 i1 t ′ x ′,( ) i2 t ′ x ′,( ),( ) x ′ x=,{ }

Var0 i1 t ′ x ′,( ) x ′ x=,{ }
--------------------------------------------------------------------------------------------------=

t x

i1 t x,( ) miss≠ i2 t x,( ) miss≠

o t 1,( )
Covar0 i1 t ′ x ′,( ) i2 t ′ x ′,( ),( ) t ′ t=,{ }

Var0 i1 t ′ x ′,( ) t ′ t=,{ }
------------------------------------------------------------------------------------------------=

t

x i1 t x,( ) miss≠ i2 t x,( ) miss≠

i3 t x,( ) miss≠



 PAGE 123

weighted by .

If ifile1 or ifile2 is a GRIB file and constant area weights should be used instead

of the area weights which correspond to the grid described in the GRIB record,

use -const,1 instead of ifile3. (For an explanation see function const (page 50)

and Section 3.2 “Combining different functions” on page 19 and Section 3.3

“Advanced standard input” on page 21.

4.20  Tests, confidence intervals, and co.

In this chapter the following notions are used

where  is the degree of freedom and  are constants.

It follows some well known statistical theory about optimal 2-sided tests. Let a set  of

parameters be given, let for every  a probability  be given, and let the null

hypothesis  to be tested. Let for the sample  the statistic of a

test problem be denoted by . Then the 2-sided test  at risk  has the form

(1)

where the two constants  are chosen in a way that firstly, under the conditions of

the null hypothesis, the probability of rejection of this null hypothesis is , and sec-

ondly that this probability is greater under the conditions of the alternative.

Name of
distribution Density Distribution

Student-t

-square

Beta

o t 1,( )
Covar0 i1 t ′ x ′,( ) i2 t ′ x ′,( ),( ) t ′ t=,{ }

Var0 i1 t ′ x ′,( ) t ′ t=,{ }
------------------------------------------------------------------------------------------------=

i3 t ′ x ′,( ) t ′ t=,{ }

tn

χ hn χn
2

bp q, B p q,( )

n p q,

θ

ϑ θ∈ Pϑ

ϑ ϑ 0= X X1 … Xn, ,( )=

Tϑ 0
ϕϑ 0

α

ϕϑ 0
x( )

0 if Tϑ 0
x( ) C1 C2,[ ]∈

1 if Tϑ 0
x( ) C1 C2,[ ]∉




=

C1 C2,

α



 PAGE 124

As regards the first condition: The requested probability is

(2)

where  is the density function of  under the probability . This leads to

the first equation for determining :

(3)

As regards to the second condition: This condition is equivalent to

(4)

with

(5)

where  is the density function of  under the probability . In nearly all

practical applications (possibly after a suitable transformation of the parameters)

can be written in the form

(6)

with suitable defined functions  and  and set . (Distribution families of this kind

are called exponential families.) Now equation (4) can now be written as

(7)

It is

(8)

Pϑ 0
ϕϑ 0

X( ) 1=( ) 1 Pϑ 0
Tϑ 0

X( ) C1 C2[ , ]∈( )– 1 fϑ 0
t( ) td

C1

C2

∫–= =

fϑ 0
Tϑ 0

X( ) Pϑ 0

C1 C2,

fϑ 0
t( ) td

C1

C2

∫ 1 α–=

Pϑ 0
ϕϑ 0

X( ) 1=( ) min
υ θ∈

Pϑ ϕϑ 0
X( ) 1=( )(=

Pϑ ϕϑ 0
X( ) 1=( ) 1 Pϑ– ϕϑ 0

X( ) 0=( ) 1 fυ t( ) td

C1

C2

∫–= =

fϑ Tϑ 0
X( ) Pϑ

fϑ

fυ t( ) t A∈( ) g υ( ) h t( ) e
ϑ t

=

g h A

υ∂
∂

fυ t( ) td

C1

C2

∫
υ ϑ 0=

0=

ϑ∂
∂

fυ t( ) t A∈( ) ϑ∂
∂g υ( ) h t( ) e

ϑ t
t A∈( ) tg ϑ( ) h t( ) e

ϑ t
+=



 PAGE 125

and differentiating of  (density functions are normalised to the overall

probability of one) leads to

(9)

where  is the expectation value of  under . Thus it is

 and equation (8) rewrites to

Equation (7) is now equivalent to

Using equation (3) one gets the second equation for determining :

It follows some well known statistical theory about optimal confidence intervals. The

optimal confidence interval  at risk , that is the true parameter  is covered by

this interval at probability , in formula , is constructed

as

(1)

this means that the parameter  belongs to the confidence interval if and only if the

null hypothesis  can not be rejected at risk .

More details can be found in [5]. Look for “unbiased unifomly most powerful tests”.

1 fυ t( ) td∫=

0
ϑ∂
∂

fυ t( ) td∫ ϑ∂
∂g υ( )

g ϑ( )
----------------- fυ t( ) td∫ tfυ t( ) td∫+ ϑ∂

∂g υ( )

g ϑ( )
----------------- Eϑ+= = =

Eϑ Tϑ 0
X( ) Pϑ

ϑ∂
∂g υ( ) g ϑ( ) Eϑ–=

ϑ∂
∂

fυ t( ) Eϑdυ t( )– tfϑ t( )+=

tfυ0
t( ) td

C1

C2

∫ Eϑ 0
fυ0

t( ) td

C1

C2

∫=

C1 C2,

tfυ0
t( ) td

C1

C2

∫ Eϑ 0
1 α–( )=

C X( ) α ϑ

1 α– Pϑ ϑ C X( )∈( ) 1 α–=

ϑ′ C x( )∈ ϕ ϑ′ x( )⇔ 0=

ϑ′

ϑ ϑ′= α



 PAGE 126

studentt

ifile ofile

(“student-t”) Computes the distribution function of the student-t distribution.

studenttinv

ofile1 ofile2 ofile3 ofile4

(“student-t inverse”) This function computes for the student-t-distribution some

significance areas. The test results in “significant lower” if the corresponding sta-

tistic is lower than the number in ofile1. It results in “significant greater” if the

corresponding statistic is greater than the number in ofile2. And it results in “sig-

nificant different” if the corresponding statistic is lower than the number in ofile3

or greater than that in ofile4. It is

chisquare

ifile ofile

(“ ”) Computes the distribution function of the -distribution.

chisquareinv

ofile1 ofile2 ofile3 ofile4

(“  inverse”) This function computes for the -distribution some significance

areas. The test results in “significant lower” if the corresponding statistic is lower

o t x,( ) tdegree_of_freedom i t x,( )( )=

o1 1 1,( ) tdegree_of_freedom
1–

risk( )=

o2 1 1,( ) tdegree_of_freedom
1–

1 risk–( )=

o3 1 1,( ) tdegree_of_freedom
1–

risk 2⁄( )=

o4 1 1,( ) tdegree_of_freedom
1–

1 risk 2⁄–( )=

χ2 χ2

o t x,( ) χdegree_of_freedom
2

i t x,( )( )=

χ2 χ2



 PAGE 127

than the number in ofile1. It results in “significant greater” if the corresponding

statistic is greater than the number in ofile2. And it results in “significant differ-

ent” if the corresponding statistic is lower than the number in ofile3 or greater

than that in ofile4. It is

where  is the solution of the following equation system:

beta

ifile ofile

(“ ”) Computes the distribution function of the -distribution.

betainv

ofile1 ofile2 ofile3 ofile4

(“  inverse”) This function computes for the -distribution some not signifi-

cance area. The test results in “significant lower” if the corresponding statistic is

lower than the number in ofile1. It results in “significant greater” if the corre-

sponding statistic is greater than the number in ofile2. And it results in “signifi-

cant different” if the corresponding statistic is lower than the number in ofile3 or

greater than that in ofile4. It is

o1 1 1,( ) χdegree_of_freedom
2

 
  1–

risk( )=

o2 1 1,( ) χdegree_of_freedom
2

 
  1–

1 risk–( )=

o3 1 1,( ) C1=

o4 1 1,( ) C2=

C1 C2,

hdegree_of_freedom x( ) xd

C1

C2

∫ 1 risk–=

hdegree_of_freedom 2+ x( ) xd

C1

C2

∫ 1 risk–=

β β

o t x,( ) B p q,( ) i t x,( )( )=

β β



 PAGE 128

where  is the solution of the following equation system:

meanstatist<n>

ifile1 ... ifile<n> ofile

(“mean statistic”) The values of the input file ifile<j> are assumed to be distrib-

uted as  with user given  and unknown . This function com-

putes the statistic of  with user given  and . For every field

element  only those records  belong to the sample , which have

. It is

meansignif<n>

ifile1 ... ifile<n> ofile

(“mean significance level”) The values of the input file ifile<j> are assumed to

be distributed as  with user given  and unknown . This func-

tion computes the significance level of the 1-sided test  with user

o1 1 1,( ) B p q,( )( ) 1– risk( )=

o2 1 1,( ) B p q,( )( ) 1– 1 risk–( )=

o3 1 1,( ) C1=

o4 1 1,( ) C2=

C1 C2,

bp q, x( ) xd

C1

C2

∫ 1 risk–=

bp 1+ q, x( ) xd

C1

C2

∫ 1 risk–=

N aj λ jσ2,( ) λ j σ2

rjajj 1=
n∑ c– rj c

x t Sj x( )

ij t x,( ) miss≠

o 1 x,( )

rj
2λ j

#Sj x( )
-----------------

j 1=

n

∑ 
 
  1 2/–

rj
1

#Sj x( )
----------------- ij t x,( )

t Sj x( )∈
∑

j 1=

n

∑ c–
 
 
 

1

#Sj x( )
j 1=

n

∑ n–

------------------------------------ λ j
1– ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑

j 1=

n

∑
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------=

N aj λ jσ2,( ) λ j σ2

rjajj 1=
n∑ c≥



 PAGE 129

given  and . For every field element  only those records  belong to the

sample , which have . With

it is

mean1test<n>

ifile1 ... ifile<n> ofile

(“mean 1-sided test”) The values of the input file ifile<j> are assumed to be dis-

tributed as  with user given  and unknown . This function tests

if  is significantly lower or significantly greater than  with user given

 and . For every field element  only those records  belong to the sample

, which have . With

it is

rj c x t

Sj x( ) ij t x,( ) miss≠

T x( )

rj
2λ j

#Sj x( )
-----------------

j 1=

n

∑ 
 
  1 2/–

rj
1

#Sj x( )
----------------- ij t x,( )

t Sj x( )∈
∑

j 1=

n

∑ c–
 
 
 

1

#Sj x( )
j 1=

n

∑ n–

------------------------------------ λ j
1– ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑

j 1=

n

∑
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------=

o 1 x,( ) t
#Sj x( )

j 1=

n∑ n–
T x( )( )=

N aj λ jσ2,( ) λ j σ2

rjajj 1=
n∑ c

rj c x t

Sj x( ) ij t x,( ) miss≠

T x( )

rj
2λ j

#Sj x( )
-----------------

j 1=

n

∑ 
 
  1 2/–

rj
1

#Sj x( )
----------------- ij t x,( )

t Sj x( )∈
∑

j 1=

n

∑ c–
 
 
 

1

#Sj x( )
j 1=

n

∑ n–

------------------------------------ λ j
1– ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑

j 1=

n

∑
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------=

o 1 x,( )
1 if T x( ) t#S1 x( ) … #Sn x( ) n–+ +

1–
1 risk–( )≥

1– if T x( ) t#S1 x( ) … #Sn x( ) n–+ +
1–

risk( )≤

0 else







=



 PAGE 130

Thus a 1 means “significant greater”, a -1 means “significant lower”, and a 0

means “no significance in the sign”.

mean2test<n>

ifile1 ... ifile<n> ofile

(“mean 2-sided test”) The values of the input file ifile<j> are assumed to be dis-

tributed as  with user given  and unknown . This function tests

if  is significantly different to  with user given  and . For every

field element  only those records  belong to the sample , which have

. With

it is

Thus a 1 means “significant different” and a 0 means “not significant different”.

meanconfid<n>

ifile1 ... ifile<n> ofile1 ofile2

(“mean confidence interval”) The values of the input file ifile<j> are assumed to

be distributed as  with user given  and unknown . This func-

tion computes the confidence interval for  with user given . For

every field element  only those records  belong to the sample , which

have . With

N aj λ jσ2,( ) λ j σ2

rjajj 1=
n∑ c rj c

x t Sj x( )

ij t x,( ) miss≠

T x( )

rj
2λ j

#Sj x( )
-----------------

j 1=

n

∑ 
 
  1 2/–

rj
1

#Sj x( )
----------------- ij t x,( )

t Sj x( )∈
∑

j 1=

n

∑ c–
 
 
 

1

#Sj x( )
j 1=

n

∑ n–

------------------------------------ λ j
1– ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑

j 1=

n

∑
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------=

o 1 x,( )
1 if T x( ) t#S1 x( ) … #Sn x( ) n–+ +

1–
1 risk 2⁄–( )≥

T∨ x( ) t#S1 x( ) … #Sn x( ) n–+ +
1–

risk 2⁄( )≤

0 else







=

N aj λ jσ2,( ) λ j σ2

rjajj 1=
n∑ rj

x t Sj x( )

ij t x,( ) miss≠



 PAGE 131

it is

The lower boundary of the confidence interval is therefore , and the

upper boundary is therefore .

meanstatist

ifile ofile

(“mean statistic”) The values of the input file ifile are assumed to be distributed

as  with unknown . This function computes the statistic of

with a user given . For every field element  only those records  belong to the

sample , which have . This function is a special case of the

function meanstatist1 (meanstatist<n> (page 128)) with  and .

meansignif

ifile ofile

(“mean significance level”) The values of the input file ifile are assumed to be

distributed as  with unknown . This function computes the signifi-

cance level of the 1-sided test  with user given . For every field element

only those records  belong to the sample , which have .

This function is a special case of the function meansignif1 (meansignif<n>

(page 128)) with  and .

∆ x( ) t#S1 x( ) … #Sn x( ) n–+ + α 2⁄,
rj

2λ j

#Sj x( )
-----------------

j 1=

n

∑ 
 
  1 2/

1

#Sj x( )
j 1=

n

∑ n–

------------------------------------ λ j
1– ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑

j 1=

n

∑⋅

=

o 1 x,( ) rj
1

#Sj x( )
----------------- ij t x,( )

t Sj x( )∈
∑

j 1=

n

∑ ∆ x( )–=

o 1 x,( ) rj
1

#Sj x( )
----------------- ij t x,( )

t Sj x( )∈
∑

j 1=

n

∑ ∆ x( )+=

o1 1 x,( )

o2 1 x,( )

N a σ2,( ) σ2 a c–

c x t

S x( ) i t x,( ) miss≠

r1 1= λ1 1=

N a σ2,( ) σ2

a c≥ c x

t S x( ) i t x,( ) miss≠

r1 1= λ1 1=



 PAGE 132

mean1test

ifile ofile

(“mean 1-sided test”) The values of the input file ifile1 are assumed to be dis-

tributed as  with unknown . This function tests if  is significantly

lower or significantly greater than  with user given . For every field element

only those records  belong to the sample , which have .

This function is a special case of the function mean1test1 (mean1test<n> (page 129))

with  and .

Thus in ofile a 1 means “significant greater”, a -1 means “significant lower”, and

a 0 means “no significance in the sign”.

mean2test

ifile ofile

(“mean 2-sided test”) The values of the input file ifile1 are assumed to be dis-

tributed as  with unknown . This function tests if  is significantly

different to  with user given . For every field element  only those records

belong to the sample , which have . This function is a special

case of the function mean2test1 (mean2test<n> (page 130)) with  and

.

Thus in ofile a 1 means “significant different” and a 0 means “not significant dif-

ferent”.

meanconfid

ifile ofile1 ofile2

(“mean confidence interval”) The values of the input file ifile1 are assumed to be

distributed as  with unknown . This function computes the confi-

dence interval for . For every field element  only those records  belong to the

sample , which have . This function is a special case of the

function meanconfid1 (meanconfid<n> (page 130)) with  and .

The lower boundaries are therefore stored in ofile1 and the upper ones in ofile2.

N a σ2,( ) σ2 a

c c x

t S x( ) i t x,( ) miss≠

r1 1= λ1 1=

N a σ2,( ) σ2 a

c c x t

S x( ) i t x,( ) miss≠

r1 1=

λ1 1=

N a σ2,( ) σ2

a x t

S x( ) i t x,( ) miss≠

r1 1= λ1 1=



 PAGE 133

meandiffstatist

ifile1 ifile2 ofile

(“mean difference statistic”) The values of the input file ifile<j> are assumed to

be distributed as  with unknown . This function computes the sta-

tistic of  with a user given . For every field element  only those

records  belong to the sample , which have . This function

is a special case of the function meanstatist2 (meanstatist<n> (page 128)) with

 and .

meandiffsignif

ifile1 ifile2 ofile

(“mean difference significance level”) The values of the input file ifile<j> are

assumed to be distributed as  with unknown . This function com-

putes the significance level of the 1-sided test  with a user given .

For every field element  only those records  belong to the sample ,

which have . This function is a special case of the function

meansignif2 (meansignif<n> (page 128)) with  and .

meandiff1test

ifile1 ifile2 ofile

(“mean difference 1-sided test”) The values of the input file ifile<j> are assumed

to be distributed as  with unknown . This function tests if

is significantly lower or significantly greater than  with a user given . For

every field element  only those records  belong to the sample , which

have . This function is a special case of the function mean1test2

(mean1test<n> (page 129)) with  and .

Thus in ofile a 1 means “significant greater”, a -1 means “significant lower”, and

a 0 means “no significance in the sign”.

N aj σ2,( ) σ2

a1 a2– c– c x

t Sj x( ) ij t x,( ) miss≠

r1 1= r2, 1–= λ1 λ2 1= =

N aj σ2,( ) σ2

a1 a2– c≥ c

x t Sj x( )

ij t x,( ) miss≠

r1 1= r2, 1–= λ1 λ2 1= =

N aj σ2,( ) σ2 a1 a2–

c c

x t Sj x( )

ij t x,( ) miss≠

r1 1= r2, 1–= λ1 λ2 1= =



 PAGE 134

meandiff2test

ifile1 ifile2 ofile

(“mean difference 2-sided test”) The values of the input file ifile<j> are assumed

to be distributed as  with unknown . This function tests if

is significantly different to  with a user given . For every field element  only

those records  belong to the sample , which have . This

function is a special case of the function mean2test2 (mean2test<n> (page 130)) with

 and .

Thus in ofile a 1 means “significant different” and a 0 means “not significant dif-

ferent”

meandiffconfid

ifile1 ifile2 ofile1 ofile2

(“mean difference confidence interval”) The values of the input file ifile<j> are

assumed to be distributed as  with unknown . This function com-

putes the confidence interval of . For every field element  only those

records  belong to the sample , which have . This function

is a special case of the function meanconfid2 (meanconfid<n> (page 130)) with

 and .

The lower boundaries are therefore stored in ofile1 and the upper ones in ofile2.

meandiffdiffstatist

ifile1 ifile2 ifile3 ifile4 ofile

(“mean difference of difference statistic”) The values of the input file ifile<j> are

assumed to be distributed as  with unknown . This function com-

putes the statistic of  with a user given . For every

field element  only those records  belong to the sample , which have

. This function is a special case of the function meanstatist4 (mean-

statist<n> (page 128)) with  and

.

N aj σ2,( ) σ2 a1 a2–

c c x

t Sj x( ) ij t x,( ) miss≠

r1 1= r2, 1–= λ1 λ2 1= =

N aj σ2,( ) σ2

a1 a2– x

t Sj x( ) ij t x,( ) miss≠

r1 1= r2, 1–= λ1 λ2 1= =

N aj σ2,( ) σ2

a1 a2–( ) a3 a4–( )– c– c

x t Sj x( )

ij t x,( ) miss≠

r1 1= r2, 1–= r3, 1–= r4, 1=

λ1 λ2 λ3 λ4 1= = = =



 PAGE 135

meandiffdiffsignif

ifile1 ifile2 ifile3 ifile4 ofile

(“mean difference of difference statistic”) The values of the input file ifile<j> are

assumed to be distributed as  with unknown . This function com-

putes the significance level of the 1-sided test  with a

user given . For every field element  only those records  belong to the sam-

ple , which have . This function is a special case of the

function meansignif4 (meansignif<n> (page 128)) with

 and .

meandiffdiff1test

ifile1 ifile2 ifile3 ifile4 ofile

(“mean difference of difference 1-sided test”) The values of the input file ifile<j>

are assumed to be distributed as  with unknown . This function

tests if  is significantly lower or significantly greater than

 with a user given . For every field element  only those records  belong to

the sample , which have . This function is a special case of

the function mean1test4 (mean1test<n> (page 129)) with

 and .

Thus in ofile a 1 means “significant greater”, a -1 means “significant lower”, and

a 0 means “no significance in the sign”.

meandiffdiff2test

ifile1 ifile2 ifile3 ifile4 ofile

(“mean difference of difference 2-sided test”) The values of the input file ifile<j>

are assumed to be distributed as  with unknown . This function

tests if  is significantly different to  with a user given .

For every field element  only those records  belong to the sample ,

which have . This function is a special case of the function

mean2test4 (mean2test<n> (page 130)) with  and

.

N aj σ2,( ) σ2

a1 a2–( ) a3 a4–( )– c≥

c x t

Sj x( ) ij t x,( ) miss≠

r1 1= r2, 1–= r3, 1–= r4, 1= λ1 λ2 λ3 λ4 1= = = =

N aj σ2,( ) σ2

a1 a2–( ) a3 a4–( )–

c c x t

Sj x( ) ij t x,( ) miss≠

r1 1= r2, 1–= r3, 1–= r4, 1= λ1 λ2 λ3 λ4 1= = = =

N aj σ2,( ) σ2

a1 a2–( ) a3 a4–( )– c c

x t Sj x( )

ij t x,( ) miss≠

r1 1= r2, 1–= r3, 1–= r4, 1=

λ1 λ2 λ3 λ4 1= = = =



 PAGE 136

Thus in ofile a 1 means “significant different” and a 0 means “not significant dif-

ferent”

meandiffdiffconfid

ifile1 ifile2 ifile3 ifile4 ofile1 ofile2

(“mean difference of difference confidence interval”) The values of the input file

ifile<j> are assumed to be distributed as  with unknown . This

function computes the confidence interval for . For every

field element  only those records  belong to the sample , which have

. This function is a special case of the function meanconfid4 (mean-

confid<n> (page 130)) with  and

.

The lower boundary of the confidence interval is therefore , and the

upper boundary is therefore .

The lower boundaries are therefore stored in ofile1 and the upper ones in ofile2.

pooledvarstatist<n>

ifile1 ... ifile<n> ofile

(“pooled variance statistic”) The values of the input file ifile<j> are assumed to

be distributed as  with user given  and unknown . This func-

tion computes the statistic of  with a user given . For every field element

 only those records  belong to the sample , which have .

It is

N aj σ2,( ) σ2

a1 a2–( ) a3 a4–( )–

x t Sj x( )

ij t x,( ) miss≠

r1 1= r2, 1–= r3, 1–= r4, 1=

λ1 λ2 λ3 λ4 1= = = =

o2 1 x,( )

o1 1 x,( )

N aj λ jσ2,( ) λ j σ2

σ2 c⁄ c

x t Sj x( ) ij t x,( ) miss≠

o 1 x,( ) 1
c
--- 1

#Sj x( )
j 1=

n

∑ n–

------------------------------------ λ j
1– ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑

j 1=

n

∑=



 PAGE 137

pooledvarsignif<n>

ifile1 ... ifile<n> ofile

(“pooled variance significance level”) The values of the input file ifile<j> are

assumed to be distributed as  with user given  and unknown .

This function computes the significance level of the 1-sided test  with a

user given . For every field element  only those records  belong to the sam-

ple , which have . With

it is

pooledvar1test<n>

ifile1 ... ifile<n> ofile

(“pooled variance 1-sided test”) The values of the input file ifile<j> are assumed

to be distributed as  with user given  and unknown . This func-

tion tests if  is significantly lower or significantly greater than  with a user

given . For every field element  only those records  belong to the sample

, which have . With

it is

N aj λ jσ2,( ) λ j σ2

σ2 c≥

c x t

Sj x( ) ij t x,( ) miss≠

T x( ) 1
c
--- 1

#Sj x( )
j 1=

n

∑ n–

------------------------------------ λ j
1– ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑

j 1=

n

∑=

o 1 x,( ) χ
#Sj x( )

j 1=

n∑ n–

2
T x( )( )=

N aj λ jσ2,( ) λ j σ2

σ2 c

c x t

Sj x( ) ij t x,( ) miss≠

T x( ) 1
c
--- 1

#Sj x( )
j 1=

n

∑ n–

------------------------------------ λ j
1– ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑

j 1=

n

∑=



 PAGE 138

Thus a 1 means “significant greater”, a -1 means “significant lower”, and a 0

means “no significance in the sign”.

pooledvar2test<n>

ifile1 ... ifile<n> ofile

(“pooled variance 2-sided test”) The values of the input file ifile<j> are assumed

to be distributed as  with user given  and unknown . This func-

tion tests if  is significantly different to  with a user given . For every field

element  only those records  belong to the sample , which have

. With

it is

where  is the solution of the following equation system:

o 1 x,( )

1 if T x( ) χ
#Sj x( )

j 1=

n∑ n–

2

 
  1–

1 risk–( )≥

1– if T x( ) χ
#Sj x( )

j 1=

n∑ n–

2

 
  1–

risk( )≤

0 else







=

N aj λ jσ2,( ) λ j σ2

σ2 c c

x t Sj x( )

ij t x,( ) miss≠

T x( ) 1
c
--- 1

#Sj x( )
j 1=

n

∑ n–

------------------------------------ λ j
1– ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑

j 1=

n

∑=

o 1 x,( )
1 if T x( ) C1 C2[ , ]∉

0 if T x( ) C1 C2[ , ]∈



=

C1 C2,

h
#Sj x( )

j 1=

n∑ n–
x( ) xd

C1

C2

∫ 1 risk–=

h
#Sj x( )

j 1=

n∑ n– 2+
x( ) xd

C1

C2

∫ 1 risk–=



 PAGE 139

Thus in ofile a 1 means “significant different” and a 0 means “not significant dif-

ferent”

pooledvarconfid<n>

ifile1 ... ifile<n> ofile1 ofile2

(“pooled variance confidence interval”) The values of the input file ifile<j> are

assumed to be distributed as  with user given  and unknown .

This function computes the confidence interval for . For every field element

only those records  belong to the sample , which have .

With

it is

where  is the solution of the following equation system:

The lower boundary of the confidence interval is therefore , and the

upper boundary is therefore .

N aj λ jσ2,( ) λ j σ2

σ2 x

t Sj x( ) ij t x,( ) miss≠

T x( ) 1

#Sj x( )
j 1=

n

∑ n–

------------------------------------ λ j
1– ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑

j 1=

n

∑=

o1 1 x,( ) 1
C2
------T x( )=

o2 1 x,( ) 1
C1
------T x( )=

C1 C2,

h
#Sj x( )

j 1=

n∑ n–
x( ) xd

C1

C2

∫ 1 risk–=

h
#Sj x( )

j 1=

n∑ n– 2+
x( ) xd

C1

C2

∫ 1 risk–=

o1 1 x,( )

o2 1 x,( )



 PAGE 140

varstatist

ifile ofile

(“variance statistic”) The values of the input file ifile are assumed to be distrib-

uted as  with unknown . This function computes the statistic of

 with a user given . For every field element  only those records  belong

to the sample , which have . This function is a special case

of the function pooledvarstatist1 (pooledvarstatist<n> (page 136)) with .

varsignif

ifile ofile

(“variance significance level”) The values of the input file ifile are assumed to

be distributed as  with unknown . This function computes the sig-

nificance of the 1-sided test  with a user given . For every field element

 only those records  belong to the sample , which have .

This function is a special case of the function pooledvarsignif1 (pooledvarsignif<n>

(page 137)) with .

var1test

ifile ofile

(“variance 1-sided test”) The values of the input file ifile are assumed to be dis-

tributed as  with unknown . This function tests if  is significantly

lower or significantly greater than  with a user given . For every field element

 only those records  belong to the sample , which have .

This function is a special case of the function pooledvar1test1 (pooledvar1test<n>

(page 137)) with .

Thus in ofile a 1 means “significant greater”, a -1 means “significant lower”, and

a 0 means “no significance in the sign”.

N a σ2,( ) σ2

σ2 c⁄ c x t

S x( ) i t x,( ) miss≠

λ1 1=

N a σ2,( ) σ2

σ2 c≥ c

x t S x( ) i t x,( ) miss≠

λ1 1=

N a σ2,( ) σ2 σ2

c c

x t S x( ) i t x,( ) miss≠

λ1 1=



 PAGE 141

var2test

ifile ofile

(“variance 2-sided test”) The values of the input file ifile are assumed to be dis-

tributed as  with unknown . This function tests if  is significantly

different to  with a user given . For every field element  only those records

belong to the sample , which have . This function is a special

case of the function pooledvar2test1 (pooledvar2test<n> (page 138)) with .

Thus in ofile a 1 means “significant greater”, a -1 means “significant lower”, and

a 0 means “no significance in the sign”.

varconfid

ifile ofile

(“variance confidence interval”) The values of the input file ifile are assumed to

be distributed as  with unknown . This function computes the confi-

dence interval for . For every field element  only those records  belong to

the sample , which have . This function is a special case of

the function pooledvarconfid1 (pooledvar2test<n> (page 138)) with .

The lower boundaries are therefore stored in ofile1 and the upper ones in ofile2.

varquotstatist

ifile1 ifile2 ofile

(“variance quotient statistic”) The values of the input file ifile<j> are assumed to

be distributed as  with unknown . This function computes the sta-

tistic of  with a user given . For every field element  only those

records  belong to the sample , which have . With

it is

N a σ2,( ) σ2 σ2

c c x t

S x( ) i t x,( ) miss≠

λ1 1=

N a σ2,( ) σ2

σ2 x t

S x( ) i t x,( ) miss≠

λ1 1=

N aj σj
2,( ) σj

2

σ1
2 σ2

2⁄( ) c⁄ c x

t Sj x( ) ij t x,( ) miss≠

Tj x( ) 1
#Sj x( ) 1–
-------------------------- ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑=



 PAGE 142

varquotsignif

ifile1 ifile2 ofile

(“variance quotient significance level”) The values of the input file ifile<j> are

assumed to be distributed as  with unknown . This function com-

putes the significance level of the 1-sided test  with user given . For

every field element  only those records  belong to the sample , which

have . With

it is

varquot1test

ifile1 ifile2 ofile

(“variance quotient 1-sided test”) The values of the input file ifile<j> are

assumed to be distributed as  with unknown . This function tests if

 is significantly lower or significantly greater than  with user given .

For every field element  only those records  belong to the sample ,

which have . With

and

o 1 x,( )
T1 x( )

T1 x( ) cT2 x( )+
----------------------------------------=

N aj σj
2,( ) σj

2

σ1
2 σ2

2⁄ c≥ c

x t Sj x( )

ij t x,( ) miss≠

Tj x( ) 1
#Sj x( ) 1–
-------------------------- ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑=

o 1 x,( ) B
#S1 x( ) 1–

2
---------------------------

#S2 x( ) 1–

2
---------------------------, 

  T1 x( )
T1 x( ) cT2 x( )+
----------------------------------------

 
 
 

=

N aj σj
2,( ) σj

2

σ1
2 σ2

2⁄ c c

x t Sj x( )

ij t x,( ) miss≠

Tj x( ) 1
#Sj x( ) 1–
-------------------------- ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑=

T x( )
T1 x( )

T1 x( ) cT2 x( )+
----------------------------------------=



 PAGE 143

it is

Thus a 1 means “significant greater”, a -1 means “significant lower”, and a 0

means “no significance in the sign”.

varquot2test

ifile1 ifile2 ofile

(“variance quotient 2-sided test”) The values of the input file ifile<j> are

assumed to be distributed as  with unknown . This function tests if

 is significantly different to  with user given . For every field element

 only those records  belong to the sample , which have .

With

and

it is

where  is the solution of the following equation system:

o 1 x,( )

1 if T x( ) B
#S1 x( ) 1–

2
---------------------------

#S2 x( ) 1–

2
---------------------------, 

  1–

1 risk–( )≥

1– if T x( ) B
#S1 x( ) 1–

2
---------------------------

#S2 x( ) 1–

2
---------------------------, 

  1–

risk( )≤

0 else








=

N aj σj
2,( ) σj

2

σ1
2 σ2

2⁄ c c

x t Sj x( ) ij t x,( ) miss≠

Tj x( ) 1
#Sj x( ) 1–
-------------------------- ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑=

T x( )
T1 x( )

T1 x( ) cT2 x( )+
----------------------------------------=

o 1 x,( )
1 if T x( ) C1 C2[ , ]∉

0 if T x( ) C1 C2[ , ]∈



=

C1 C2,



 PAGE 144

Thus in ofile a 1 means “significant different” and a 0 means “not significant dif-

ferent”.

varquotconfid

ifile1 ifile2 ofile

(“variance quotient confidence interval”) The values of the input file ifile<j> are

assumed to be distributed as  with unknown . This function tests if

 is significantly different to  with user given . For every field element

 only those records  belong to the sample , which have .

With

it is

where  is the solution of the following equation system:

b#S1 x( ) 1–

2
---------------------------

#S2 x( ) 1–

2
---------------------------,

x( ) xd

C1

C2

∫ 1 risk–=

b#S1 x( ) 1–

2
--------------------------- 1+

#S2 x( ) 1–

2
---------------------------,

x( ) xd

C1

C2

∫ 1 risk–=

N aj σj
2,( ) σj

2

σ1
2 σ2

2⁄ c c

x t Sj x( ) ij t x,( ) miss≠

Tj x( ) 1
#Sj x( ) 1–
-------------------------- ij t x,( ) 1

#Sj x( )
----------------- ij t ′ x,( )

t ′ Sj x( )∈
∑– 

  2

t Sj x( )∈
∑=

o1 1 x,( )
1 C2–( ) T1 x( )

C2T2 x( )
--------------------------------------=

o2 1 x,( )
1 C1–( ) T1 x( )

C1T2 x( )
--------------------------------------=

C1 C2,

b#S1 x( ) 1–

2
---------------------------

#S2 x( ) 1–

2
---------------------------,

x( ) xd

C1

C2

∫ 1 risk–=

b#S1 x( ) 1–

2
--------------------------- 1+

#S2 x( ) 1–

2
---------------------------,

x( ) xd

C1

C2

∫ 1 risk–=



 PAGE 145

The lower boundary of the confidence interval is therefore , and the

upper boundary is therefore .

regresstatist

ifile ofile

(“regression statistic”) The values of the input file ifile are assumed to be dis-

tributed as  with unknown , , and  and with record number

. This function computes the statistic of  with a user given . For every

field element  only those records  belong to the sample , which have

. With

it is

regressions

ifile ofile

(“regression significance level”) The values of the input file ifile are assumed to

be distributed as  with unknown , , and  and with record

number . This function computes the significance level of the 1-sided test

with a user given . For every field element  only those records  belong to the

sample , which have . With

o1 1 x,( )

o2 1 x,( )

N a bt+ σ2,( ) a b σ2

t b c– c

x t S x( )

i t x,( ) miss≠

b̂

i t x,( ) 1
#S x( )
---------------- i t ′ x,( )

t ′ S x( )∈
∑– 

  t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

--------------------------------------------------------------------------------------------------------------------------------------------------------=

o 1 x,( )
#S x( ) 2– b̂ c–( ) t

1
#S x( )
---------------- t ′

t ′ S x( )∈
∑–

i t x,( ) 1
#S x( )
---------------- i t ′ x,( )

t ′ S x( )∈
∑– 

  b̂2 t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 –
2

-----------------------------------------------------------------------------------------------------------------------------------------------------------------=

N a bt+ σ2,( ) a b σ2

t b c≥

c x t

S x( ) i t x,( ) miss≠

b̂

i t x,( ) 1
#S x( )
---------------- i t ′ x,( )

t ′ S x( )∈
∑– 

  t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

--------------------------------------------------------------------------------------------------------------------------------------------------------=



 PAGE 146

and

it is

regres1test

ifile ofile

(“regression 1-sided test”) The values of the input file ifile are assumed to be

distributed as  with unknown , , and  and with record

number . This function tests if  is significantly lower or significantly greater

than  with user given . For every field element  only those records  belong

to the sample , which have . With

and

it is

T x( )
#S x( ) 2– b̂ c–( ) t

1
#S x( )
---------------- t ′

t ′ S x( )∈
∑–

i t x,( ) 1
#S x( )
---------------- i t ′ x,( )

t ′ S x( )∈
∑– 

  b̂2 t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 –
2

-----------------------------------------------------------------------------------------------------------------------------------------------------------------=

o 1 x,( ) t#S x( ) 2– T x( )( )=

N a bt+ σ2,( ) a b σ2

t a

c c x t

S x( ) i t x,( ) miss≠

b̂

i t x,( ) 1
#S x( )
---------------- i t ′ x,( )

t ′ S x( )∈
∑– 

  t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

--------------------------------------------------------------------------------------------------------------------------------------------------------=

T x( )
#S x( ) 2– b̂ c–( ) t

1
#S x( )
---------------- t ′

t ′ S x( )∈
∑–

i t x,( ) 1
#S x( )
---------------- i t ′ x,( )

t ′ S x( )∈
∑– 

  b̂2 t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 –
2

-----------------------------------------------------------------------------------------------------------------------------------------------------------------=

o 1 x,( )
1 if T x( ) t#S x( ) 2–

1–
1 risk–( )≥

1– if T x( ) t#S1 x( ) 2–
1–

risk( )≤

0 else






=



 PAGE 147

Thus a 1 means “significant greater”, a -1 means “significant lower”, and a 0

means “no significance in the sign”.

regres2test

ifile ofile

(“regression 2-sided test”) The values of the input file ifile are assumed to be

distributed as  with unknown , , and  and with record

number . This function tests if  is significantly different to  with user given

. For every field element  only those records  belong to the sample ,

which have . With

and

it is

Thus a 1 means “significant different” and a 0 means “not significant different”.

regresconfid

ifile ofile1 ofile2

(“regression confidence interval”) The values of the input file ifile are assumed

to be distributed as  with unknown , , and  and with record

number . This function computes the confidence interval for . For every field

N a bt+ σ2,( ) a b σ2

t a c

c x t S x( )

i t x,( ) miss≠

b̂

i t x,( ) 1
#S x( )
---------------- i t ′ x,( )

t ′ S x( )∈
∑– 

  t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

--------------------------------------------------------------------------------------------------------------------------------------------------------=

T x( )
#S x( ) 2– b̂ c–( ) t

1
#S x( )
---------------- t ′

t ′ S x( )∈
∑–

i t x,( ) 1
#S x( )
---------------- i t ′ x,( )

t ′ S x( )∈
∑– 

  b̂2 t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 –
2

-----------------------------------------------------------------------------------------------------------------------------------------------------------------=

o 1 x,( ) 1 if T x( ) t#S1 x( ) 2–
1–

risk 2⁄( )≤ T x( )∨ t#S x( ) 2–
1–

1 risk 2⁄–( )≥

0 else



=

N a bt+ σ2,( ) a b σ2

t b



 PAGE 148

element  only those records  belong to the sample , which have

. With

and

it is

The lower boundary of the confidence interval is therefore , and the

upper boundary is therefore .

corstatist

ifile1 ifile2 ofile

(“correlation statistic”) The values of the input files ifile<j> are assumed to be

distributed as  with unknown  and  and with an unknown corre-

lation . This function computes the statistic of  with a

user given . For every field element  only those records  belong to the sam-

ple , which have  and . Let the sample cor-

relation denoted by . With

x t S x( )

i t x,( ) miss≠

b̂

i t x,( ) 1
#S x( )
---------------- i t ′ x,( )

t ′ S x( )∈
∑– 

  t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 
t S x( )∈
∑

--------------------------------------------------------------------------------------------------------------------------------------------------------=

∆ x( ) t#S x( ) 2– α 2⁄,=

i t x,( ) 1
#S x( )
---------------- i t ′ x,( )

t ′ S x( )∈
∑– 

  b̂2 t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑– 

 –
2

#S x( ) 2– t
1

#S x( )
---------------- t ′

t ′ S x( )∈
∑–

-----------------------------------------------------------------------------------------------------------------------------------------------------------------⋅

o1 1 x,( ) b̂ ∆ x( )–=

o2 1 x,( ) b̂ ∆ x( )+=

o1 1 x,( )

o2 1 x,( )

N aj σj
2,( ) aj σj

2

ρ ρ ρ0–( ) 1 2ρρ0 ρ0
2

––⁄

ρ0 x t

S x( ) i1 t x,( ) miss≠ i2 t x,( ) miss≠

r x( )

r ′ x( )
r x( ) ρ0–( )

1 2r x( ) ρ0 ρ0
2

––
--------------------------------------------=



 PAGE 149

it is

For a mathematical explanation see function cor1test (page 149).

corsignif

ifile1 ifile2 ofile

(“correlation significance level”) The values of the input files ifile<j> are

assumed to be distributed as  with unknown  and  and with an

unknown correlation . This function computes the significance level of the 1-

sided test  with a user given . For every field element  only those

records  belong to the sample , which have  and

. Let the sample correlation denoted by . With

and

it is

For a mathematical explanation see function cor1test (cor1test (page 149)).

cor1test

ifile1 ifile2 ofile

(“correlation 1-sided test”) The values of the input files ifile<j> are assumed to

be distributed as  with unknown  and  and with an unknown cor-

relation . This function tests if  is significantly lower or significantly greater

o 1 x,( ) #S x( ) 2–
r ′ x( )

1 r ′ x( ) 2
–

-----------------------------=

N aj σj
2,( ) aj σj

2

ρ

ρ ρ0≥ ρ0 x

t S x( ) i1 t x,( ) miss≠

i2 t x,( ) miss≠ r x( )

r ′ x( )
r x( ) ρ0–( )

1 2r x( ) ρ0 ρ0
2

––
--------------------------------------------=

T x( ) #S x( ) 2–
r ′ x( )

1 r ′ x( ) 2
–

-----------------------------=

o 1 x,( ) t#S x( ) 2– T x( )( )=

N aj σj
2,( ) aj σj

2

ρ ρ



 PAGE 150

than  with a user given . For every field element  only those records

belong to the sample , which have  and .

Let for every field element  the sample of ifile<j> be denoted by . The sam-

ple  is then transformed to the sample

Now it is  equivalent to . And the latter

one is tested. It is , and an analogous

formula holds for the sample correlation.

Let the sample correlation denoted by . With

and

it is

Thus a 1 means “significant greater”, a -1 means “significant lower”, and a 0

means “no significance in the sign”.

cor2test

ifile1 ifile2 ofile

(“correlation 2-sided test”) The values of the input files ifile<j> are assumed to

be distributed as  with unknown  and  and with an unknown cor-

ρ0 ρ0 x t

S x( ) i1 t x,( ) miss≠ i2 t x,( ) miss≠

x Xj

X2

X2 ′ X2 r0

Var X2( )

Var X1( )
--------------------------X1–=

Cor X1 X2,( ) ρ0= Cor X1 X2 ′,( ) 0=

Cor X1 X2 ′,( ) ρ ρ0–( ) 1 2ρρ0 ρ0
2

––⁄=

r x( )

r ′ x( )
r x( ) ρ0–( )

1 2r x( ) ρ0 ρ0
2

––
--------------------------------------------=

T x( ) #S x( ) 2–
r ′ x( )

1 r ′ x( ) 2
–

-----------------------------=

o 1 x,( )
1 if T x( ) t#S x( ) 2–

1–
1 risk–( )≥

1– if T x( ) t#S1 x( ) 2–
1–

risk( )≤

0 else






=

N aj σj
2,( ) aj σj

2



 PAGE 151

relation . This function tests if  is significantly different to  with a user

given . For every field element  only those records  belong to the sample

, which have  and .

Let for every field element  the sample of ifile<j> be denoted by . The sam-

ple  is then transformed to the sample

Now it is  equivalent to . And the latter

one is tested. It is , and an analogous

formula holds for the sample correlation.

Let the sample correlation denoted by . With

and

it is

Thus a 1 means “significant different” and a 0 means “not significant different”.

corconfid

ifile1 ifile2 ofile1 ofile2

(“correlation confidence interval”) The values of the input files ifile<j> are

assumed to be distributed as  with unknown  and  and with an

unknown correlation . This function computes the confidence interval for .

ρ ρ ρ0

ρ0 x t

S x( ) i1 t x,( ) miss≠ i2 t x,( ) miss≠

x Xj

X2

X2 ′ X2 r0

Var X2( )

Var X1( )
--------------------------X1–=

Cor X1 X2,( ) ρ0= Cor X1 X2 ′,( ) 0=

Cor X1 X2 ′,( ) ρ ρ0–( ) 1 2ρρ0 ρ0
2

––⁄=

r x( )

r ′ x( )
r x( ) ρ0–( )

1 2r x( ) ρ0 ρ0
2

––
--------------------------------------------=

T x( ) #S x( ) 2–
r ′ x( )

1 r ′ x( ) 2
–

-----------------------------=

o 1 x,( ) 1 if T x( ) t#S1 x( ) 2–
1–

risk 2⁄( )≤ T x( )∨ t#S x( ) 2–
1–

1 risk 2⁄–( )≥

0 else



=

N aj σj
2,( ) aj σj

2

ρ ρ



 PAGE 152

For every field element  only those records  belong to the sample ,

which have  and . Let the sample correlation

denoted by . With

and

it is

The lower boundary of the confidence interval is therefore , and the

upper boundary is therefore .

The basis of this confidence interval is the test described at the explanation of

function cor2test (page 150). Every value  belongs to the confidence interval

for which the null hypotheses  can not be rejected.

4.21  Empirical Orthogonal Functions

Some theory about EOF’s can be found in [3]. The way how to take area weights into

account is outlined in [4].

eof

ifile ofile1 ofile2

(“empirical orthogonal functions”) This functions computes the (area weighted)

empirical orthogonal functions (EOF’s). The eigenvalues are stored in ofile1 and

the corresponding eigenfunctions in ofile2. The eigenvalues are sorted in

descending order.

x t S x( )

i1 t x,( ) miss≠ i2 t x,( ) miss≠

r x( )

c
t#S x( ) 2– α 2⁄,

#S x( ) 2– t+ #S x( ) 2– α,
2

---------------------------------------------------------=

∆ x( ) c
2

1 c
2

–
-------------- 1 r x( ) 2

– 
 

=

o1 1 x,( ) r x( ) ∆ x( )–=

o2 1 x,( ) r x( ) ∆ x( )+=

o1 1 x,( )

o2 1 x,( )

ρ0

ρ ρ0=



 PAGE 153

To print the relative amount of the eigenvalues compared to the total variance,

type after the computations of the EOF’s

ext info -div ofile1 -sum ofile1

To compute the time series of the principal component number <n> and to store

it in the file pc.<n>.ext, type

ext anom -dotprodr ifile -selrec,<n>,<n> ofile2 pc.<n>.ext

The number of EOF’s is one less than the minimum of the number of records and

the field size.

Let now  be the field size,  be the number of time steps, let the -matrix

 of the anomalies be defined as

and let the area weights of the elements on position  be denoted as  and let

the -matrix  be defined by

(It is possible to suppress the subtraction of the mean, but in this case something

else comparable to the mean should have been subtracted by the user before.)

The covariance matrix  is now defined by

where  is the transpose of .

The EOF’s  to the eigenvalues  are defined as the eigenvectors of

, i.e. it is .

The eigenvectors are orthonormal, i.e. it is

n m m n×

A

A at x,( )
t x,

i t x,( ) 1
#T
------ i t ′ x,( )

t ′ T∈
∑– 

 
t x,

= =

i wi

n n× W

W

w1

…
wn

=

C

C
1

m 1–
-------------A

T
A=

A
T

A

ej( )
j

λ j( )
j

CW CWej λ jej=



 PAGE 154

If  then the program computes the eigenvectors  of  and

afterwards . Because of

 the elements of  could

be understood as the covariances of the “adjusted” anomalies .

If  then the program computes the eigenvectors  of  and

afterwards  and normalizes  at the end. The elements of

could be understood as area weighted dotproducts of the anomalies of each

record.

This function stores simultaneously all fields of ifile in the memory and should

therefore not be used for large files. For large files use functions eofspatial

(page 155) resp. eoftime (page 155).

eofw

ifile1 ifile2 ofile1 ofile2

(“empirical orthogonal functions (using a weight file)”) The same as function eof

(page 152), but with ifile2 as the weights instead of the internal weight field. The

weights in ifile2 are normalized to the sum of 1 before used.

This function stores all fields of ifile1 in the memory and should therefore not be

used for large files. For large files use functions eofspatialw (page 155) resp. eof-

timew (page 156).

If ifile1 is a LOLA or GRIB file and constant area weights should be used

instead of the area weights which correspond to the grid described in the LOLA

or GRIB record, use -const,1 instead of ifile2. (For an explanation see function

const (page 50) and Section 3.2 “Combining different functions” on page 19 and

Section 3.3 “Advanced standard input” on page 21.)

wxej x( ) ej ′ x( )
x 1=

n

∑ 1 if j j ′=

0 if j j ′≠



=

n m≤ fj( )
j

W
1 2⁄

CW
1 2⁄

ej x( ) wi
1 2⁄–

fj x( )=

W
1 2⁄

CW
1 2⁄ 1

m 1–
------------- AW

1 2⁄
 
  T

AW
1 2⁄

 
 

= W
1 2⁄

CW
1 2⁄

wxat x,

n m> gj( )
j

1
m 1–
-------------AWA

T

ej A
T
g= ej AWA

T



 PAGE 155

eofspatial

ifile ofile1 ofile2

(“empirical orthogonal function computed in the spatial space”) The same as

function eof (page 152), but two differences: It does not store all fields of ifile in

the memory and it does the computation always in the spatial space, i.e. it always

computes the eigensolution of  in the notion of the

description of eof. Thus, if the number time steps is notable smaller then the

number of not missing field elements per record, function eoftime (page 155)

should be used instead.

eofspatialw

ifile1 ifile2 ofile1 ofile2

(“empirical orthogonal function computed in the spatial space (using a weight

file)”) The same as function eofspatial (page 155), but with ifile2 as the weights

instead of the internal weight field. The weights in ifile2 are normalized to the

sum of 1 before used.

If the number time steps is notable smaller then the number of not missing field

elements per record, function eoftimew (page 156) should be used instead.

If ifile1 is a LOLA or GRIB file and constant area weights should be used

instead of the area weights which correspond to the grid described in the LOLA

or GRIB record, use -const,1 instead of ifile2. (For an explanation see function

const (page 50) and Section 3.2 “Combining different functions” on page 19 and

Section 3.3 “Advanced standard input” on page 21.)

eoftime

ifile ofile1 ofile2

(“empirical orthogonal function computed in the time space”) The same as func-

tion eof (page 152), but two differences: It does not store all fields of ifile in the

memory and it does the computation always in the time space, i.e. it always com-

putes the eigensolution of  in the notion of the description of eof.

1
m 1–
------------- AW

1 2⁄
 
  T

AW
1 2⁄

 
 

1
m 1–
-------------AWA

T



 PAGE 156

Thus, if the number of time steps is greater than the number of not missing field

elements per record, function eofspatial (page 155) should be used instead.

This function is creating a temporary file which is normally removed at the end.

But there are some cases in which this function has no chance to remove this file,

the most common is the killing of the process by the unix command kill -9. So if

this job should be killed, it should be done without the option -9. If this temporar-

ily file is not removed, the user should do it by hand. Therefore the name of this

file is printed to standard error.

The size of this file is approximately 2 times the number of records of ifile1 mul-

tiplied by the number of field elements per record.

So in the case of a very big ifile1 the user has to take care of the directory where

this file is created. This directory is $TMPDIR if such an environment variable exists

and its contains is really a directory. Otherwise it is /tmp.

eoftimew

ifile1 ifile2 ofile1 ofile2

(“empirical orthogonal function computed in the time space (using a weight

file)”) The same as function eoftime (page 155), but with ifile2 as the weights

instead of the internal weight field. The weights in ifile2 are normalized to the

sum of 1 before used.

If the number of time steps is greater than the number of not missing field ele-

ments per record, function eofspatialw (page 155) should be used instead.

If ifile1 is a LOLA or GRIB file and constant area weights should be used

instead of the area weights which correspond to the grid described in the LOLA

or GRIB record, use -const,1 instead of ifile2. (For an explanation see function

const (page 50) and Section 3.2 “Combining different functions” on page 19 and

Section 3.3 “Advanced standard input” on page 21.)

This function is creating a temporary file which is normally removed at the end.

But there are some cases in which this function has no chance to remove this file,

the most common is the killing of the process by the unix command kill -9. So if



 PAGE 157

this job should be killed, it should be done without the option -9. If this temporar-

ily file is not removed, the user should do it by hand. Therefore the name of this

file is printed to standard error.

The size of this file is approximately 2 times the number of records of ifile1 mul-

tiplied by the number of field elements per record.

So in the case of a very big ifile1 the user has to take care of the directory where

this file is created. This directory is $TMPDIR if such an environment variable exists

and its contains is really a directory. Otherwise it is /tmp.

4.22  Fourier and spectra

fourier

ifile ofile

(“fourier”) Performs the fourier transformation or the reverse fourier transforma-

tion. If the record number  is a power of 2 then the algorithm of the fast fourier

transformation is used. It is

where a user given  leads to the forward transformation and a user given

 leads to the backward transformation. If the file ifile consists only of

complex records, then the fields of file ofile, computed by

ext fourier,1 -fourier,-1 ifile ofile

are the same than that of ifile. For real input files see function retocomplex

(page 83).

spectrum

ifile ofile

(“spectrum”) This function is for doing a spectral analyses of ifile. The user has

to give the chunk length, the number of segments, and the kind of data window.

n

o t 1+ x,( ) 1

n
------- i j 1+ x,( ) eε2πijt

j 0=

n 1–

∑=

ε 1–=

ε 1=



 PAGE 158

The estimation of the frequencies is done for several segments separately and

averaged afterwards. The length of such a segment is called chunk length. The

chunk length, which is also the longest period which can be resolved, should be

chosen smaller than the total length of ifile to get statistical certainty by the use

of several segments.

It is the task of the user to find a sensible balance between the number  of seg-

ments and the chunk length . It is sensible to use overlapping segments. If an

integer value for the number of segments is suggested by this function and this

value is chosen (which should be done), then the segments are overlapping by

50%. If  is the total length of ifile, then the function suggests

Be warned: If only one segment is chosen, the variance of the frequency estima-

tor is equal to the mean itself! This variance is reduced approximately by a factor

of  if the segments are overlapping by 50%.

If there is no overlapping then the variance reduces nearly by the same factor

(namely ), but the maximal resolvable period length is shorter. This would be a

vast of information. If there is too much overlapping then the statistically

dependence between the frequency estimators of the different segments is too

large. In the extreme case of 100% overlapping the variance is not reduced any

more!

If  is a power of 2 then for the internal fourier transformation the algorithm for

the fast fourier transformation is used.

There are 4 built in data windows. Why a data window? The base of the fre-

quency estimation is a fourier transformation. But a fourier transformation

“thinks” that the data are periodically, this means that the last record of ifile is

“thought” to be followed by the first record of ifile. If the data are periodical,

this is correct and no window should be used, but if the data are not periodical,

the fourier transformation “concentrates” too much on the sharp jump from the

last record to the first one. To avoid this the data should be windowed. There are

N

L

n

N
2n
L

------ 1–≈

9 11⁄( ) N

N

L



 PAGE 159

3 often used window functions, but the influence of the used window to the result

should not be too strong. The Hann window is a often used one.

The window functions are:

The record number  of ofile is the estimation of the power spectrum density of

frequencies around  cycles per time step, which corresponds to a

period of .

If a window is used ifile should be detrended, because not the power at exact

one frequency is estimated, but a weighted average of the powers of the fre-

quency and some “frequency bins” around it. Thus if the original data have a big

mean (frequency 0), then the second record of ofile is very strongly influenced

by this mean. The input data can be detrended by the user or by this function.

The spectrum is normalized in a way that the integral of the power spectrum den-

sity over all frequencies is round about the sum of the squares of the original data

(after subtracting the mean resp. after detrending). If the data were detrended or

at least the mean was subtracted, then this sum of squares is the sample variance.

For even  this integral over all frequencies is defined as

and for odd  it is defined as

Window Window function

No  for .

Hann
 for .

Bartlett
 for .

Welch
 for .

w k( ) 1= k 0 … L 1–, ,=

w k( ) 1 2π k 1+( )
L 1+

-------------------------cos–= k 0 … L 1–, ,=

w k( ) w L 1– k–( ) k= = k 0 … L
2
--- 1–, ,=

1
k 1+( ) 0.5 L 1+( )–

0.5 L 1+( )
----------------------------------------------------

2
– k 0 … L 1–, ,=

t

t 1–( ) L⁄

L t 1–( )⁄

L

spectrum k x,( ) kd

0

1 2⁄

∫ 1
2L
------o 0 x,( ) 1

L
--- o k x,( )

k 1=

L 2⁄ 1–

∑ 1
2L
------o L 2⁄ x,( )+ +=

L

spectrum k x,( ) kd

0

1 2⁄

∫ 1
2L
------o 0 x,( ) 1

L
--- o k x,( )

k 1=

L 1–( ) 2⁄

∑+=



 PAGE 160

Try

ext longinfo -spectrum -randomnormal,10000,6

to convince yourself. The function randomnormal (page 52) produces a white spec-

trum, so due to the normalization the spectrum has the constant value 2.

If the detrended input data are denoted by  and the window function

is denoted by  and is normalized to , then a fourier

transformation

is done for all  and the power spectrum density  at fre-

quency  is estimated as

Thus the integral of the power spectrum density is , which is approxi-

mately equal to .

To visualize a spectra using the plotting software xvgr, one can type

ext output spectrum.ext > y.asc
ext output -divc,<segment_length> -for,0,<half_segment_length>,1 > x.asc
paste x.asc y.asc > x_y.asc
xvgr x_y.asc

(See functions output (page 46), divc (page 75) and for (page 51) and Section 3.2

“Combining different functions” on page 19 for details.) If a logarithmic x-axis is

desired, before calling xvgr the first line of the x_y.asc must be deleted, because it

contains 0 as x-values. Chose menu View - Graph - Set graph type to chose loga-

rithmic x-axis and menu View - Ticks/tick labels -

Special ticks-tick label to write period lengths instead of frequencies at the x-

axis.

x0 … xL 1–, ,

w0 … wL 1–, , wtt
L 1–∑ 1=

ck wtxte
ε2πikt

t 0=

L 1–

∑=

k 0 … L 1–, ,= psd k( )

k

psd k( )

2 c0
2

if k 0=

ck
2

cL k–
2

+ if k 1> k L 2⁄<∧

2 cL 2⁄
2

if k L 2⁄=







=

wtxtt 0=
L 1–∑

L
1–

xtt 0=
L 1–∑



 PAGE 161

More information can be found in [2].

4.23  Interpolation

timeinterpolate

ifile ofile

(“time interpolate”) This function perform a linear interpolation between the dif-

ferent records. The user has to type in the number  of time steps from one

record to the next. For  with  it is

interpolate

ifile ofile

(“interpolate”) This function, which interpolates fields from one longitude/lati-

tude grid to another, needs probably a description of the input grid and in any

case a description of the output grid. To avoid typing the whole descriptions of

the grids the user should use grib description files as in Section 3.6 “Grid

description files” on page 24.

If ifile has SIMPLE, EXTRA, or SERVICE format, then both descriptions must

be given, that of the input grid and that of the output grid. If ifile has LOLA or

GRIB format, then only the description of the output grid must be given, since

the input grid is known. It is a good idea to choose LOLA as output format.

First example: To interpolate the EXTRA file ifile.ext from a T21 grid to a reg-

ular grid with 72 longitude and 36 latitudes, just type

cat $GRIDS/t21.grid.asc $GRIDS/r72x36.grid.asc | lola interpolate ifile.ext \
  ofile.lola

The environment variable GRIDS should be set as described in Section 3.6 “Grid

description files” on page 24.

n

t ′ t ′ 0 … n, ,=

o nt t ′– 1+ x,( ) t ′
n
---i t x,( ) 1 t ′

n
---– 

  i t 1+ x,( )+=



 PAGE 162

Second example: To interpolate the GRIB file ifile.grb to the same output grid,

just type

lola interpolate ifile.grb ofile.lola < $GRIDS/r72x36.grid.asc

If only a box of ofile is needed, construct a grid description file of this box by

using the functions griddesindexbox0 (page 164), griddesindexbox1 (page 164),

griddeslonlatbox0 (page 165), or griddeslonlatbox1 (page 165).

The basis of the interpolation is an underlying continuous field which is con-

structed in the following way: For two neighboured longitudes  and  and

two neighboured latitudes  and  of the input grid every point at longitude

and latitude  with  and  is assigned the value

(1)

where  is the value at longitude  and latitude . If one of the four values

 is the missing value, then  is also the missing value. This

means: Interpolation is done only between input grid points, there is never done

some kind of extrapolation.

The value at a special output grid point is now computed as a weighted mean of

this underlying continuous field over an area which is bounded by lines lying

exactly between this grid point and the neighboured ones. In the following figure

the black circles represent output grid points and the square shows the area which

is used for computing the area weighted mean to determine the value of the out-

put grid point in the middle.

The special cases of output grid points lying at the edge of the output grid is

treated the same as discussed in the explanation of function weight0 (page 49).

x1 x2

y1 y2 x

y x1 x x2≤ ≤ y1 y y2≤ ≤

a a11 a12 a11–( )
x x1–

x2 x1–
---------------- a22 a11–( )

y y1–

y2 y1–
----------------

a22 a12– a21– a11+( )
x x1–( ) y y1–( )

x2 x1–( ) y2 y1–( )
----------------------------------------------

+ +

+

=

aij xi yj

a11 a12 a21 a22, , , a



 PAGE 163

Parts of the area at which the underlying continuous field has the missing value

are treated as not belonging to the area with the side effect of a probably reduced

area size.

A field is losing contrast while interpolating, or more precise, the field is con-

verging to a constant field if interpolation is done infinitely often. This can very

easily be seen for the special case of an output grid which is identical to the input

grid. The reason for losing contrast is as follows: The values at the output grid

points are area weighted means of the underlying continuous field, but the values

at the input grid points are not.

To get a contrast preserving interpolation one has to use another underlying con-

tinuous field: It must be determined by the condition that for every input grid

point the mean of this field over the area around this point must be the value of

the input field at this point.

To use such an underlying continuous field call function contrast (page 164)

before the interpolation. Function contrast changes the input field to a new field

in a way, that the continuous field which is constructed from the new field using

equation (1) is the desired underlying continuous field.

This implies that if a coarse grid is interpolated contrast preserving to a fine grid

and is afterwards interpolated back contrast preserving to the original grid, the

field should be nearly unchanged. For the special case of an output grid which is

equal to the input grid the contrast preserving interpolation let the field

unchanged.

Why is function contrast not part of the function interpolate? There are two rea-

sons: Firstly a user does probably not wish that kind of contrast preserving and

secondly on a multi processor machine it is now possible to parallelize the com-

putation.

Summarized: If function contrast is not used then the interpolation is losing

contrast and if it is used, then the interpolation is contrast preserving.



 PAGE 164

contrast

ifile ofile

(“contrast”) This function is thought to be used before calling the function inter-

polate (page 161) to raise the “contrast” of the input field to make a contrast pre-

serving interpolation. For reason see the explanation of function interpolate.

For example type

cat $GRIDS/t21.grid.asc $GRIDS/r72x36.grid.asc | lola interpolate -contrast \
  ifile.ext ofile.lola

or

lola interpolate -contrast ifile.grb ofile.lola < $GRIDS/r72x36.grid.asc

If the field of ofile is interpolated by function interpolate to the same grid, then

the interpolated field is unchanged. Try

lola griddes ifile.lola | lola interpolate -contrast ifile.lola ofile.lola
lola info -sub ifile.lola ofile.lola

to convince yourself!

griddesindexbox0

(“grid description of index box”) This function can be used to construct a grid

description file of a box.

For example:

cat $GRIDS/r72x36.grid.asc - | lola griddesindexbox0 > box.grid.asc

(Press control-D at end of standard input.)

griddesindexbox1

ifile

(“grid description of index box”) This function can be used to construct a grid

description file of a box.



 PAGE 165

For example:

lola griddesindexbox1 any_file_with_correct_grid.lola > box.grid.asc

griddeslonlatbox0

(“grid description of longitude/latitude box”) This function can be used to con-

struct a grid description file of a box.

For example:

cat $GRIDS/r72x36.grid.asc - | lola griddeslonlatbox0 > box.grid.asc

(Press control-D at end of standard input.)

griddeslonlatbox1

ifile

(“grid description of longitude/latitude box”) This function can be used to con-

struct a grid description file of a box.

For example:

lola griddeslonlatbox1 any_file_with_correct_grid.lola > box.grid.asc

4.24  Classes

classes

ifile ofile1 ofile2

(“classes”) This function is for counting and for averaging data which lie in user

given quantity classes. For every user given time period in ofile1 is stored for

every user given quantity class the mean of all values which lie in this classes

and in ofile2 the number of values which lie in this class.

(See Section 3.4 “Not required output files” on page 22 if only one of the both

output files are required.)

At first the user has to give the number of quantity classes.



 PAGE 166

Then he has to give a factor  and a summand  which can be used for trans-

forming the input data to more common units. If for example in ifile tempera-

tures in Kelvin are stored, but the quantity classes should be given in degree

Celsius, then a good choice is  and . If in ifile precipitations

in meter per second are stored, but the quantity classes should be given in milli-

metre per day, then a good choice is  and . If no transforma-

tion on the input data should be done the user must set  and .

After giving  and  the user has to give for all classes a level number and the

lower and the upper boundary of this class. A value  falls in a quantity classes

with lower boundary  and upper boundary  if and only if

At the end the user has to give the length of the time periods which should be

considered separately. The length 0 means to consider all records together.

This computations are done independent for every field element.

durations

ifile1 ifile2 ifile3 ofile1 ofile2 ofile3

(“durations of events”) This function is for analysing the durations of events

which are defined by a value lying in a user given range. For example dry spells

could be defined by precipitation less than 0.1 mm/day for more than a given

number of days. Heat periods could be defined by a maximum temperature of

more than 30˚C for a at least a given number of days.

This function is doing the computations separately for every user given time

period and independent for every field element.

Every event belongs to an event spell, which is defined by the maximal interval

around this event which consists only of other events. For example every dry day

belongs to a dry spell (which naturally could have a length of 1).

For analysing the durations of these event spells the user can define several event

spell duration classes. An event belongs to such an event spell duration class if

b a

b 1= a 273.15–=

b 8.64e7= a 0=

b 1= a 0=

b a

y

c1 c2

c0 a by+≤ a by+ c1<∧



 PAGE 167

the event spell around it has a length greater than or equal to a minimal and less

than of equal to a maximal number of records. A record which is not an event

belongs to no event spell duration class.

This function stores in ofile1 for every event spell duration class the relative

amount of records belonging to this class. In ofile1 the user can find the numbers

for statements like: “40% of all days are belonging to a dry spell longer than one

month”.

It stores in ofile2 for every event spell duration class the number of the occur-

rences of this event spell duration class. Here the user can find the values for

statements like: “Every year there are at average 3.4 dry spells with a length of

more than one month”. An event spell which overlap the time period which is

considered separately is only counted relatively. If for example only 3 records of

an event spell of the total length of 12 records are lying in the considered time

interval, these event spell is counted only as 0.25.

And last not least this function stores in ofile3 the average waiting time for the

next record which is not an event. These numbers can be used for statements like

“The average waiting time for the next precipitation on a randomly chosen day is

5.2 days”. The more exact formulation is: For every record in the considered

time period which is not an event it is added 0 and for every one which is an

event it is added the number of records to the next record which is not an event,

even if this one is lying outside the time period. This sum is then divided by the

length of the considered time period and stored in ofile3.

(See Section 3.4 “Not required output files” on page 22 if not all of the output

files are required.)

The input file ifile1 is scanned for the values.

Because an event spell could have begun before the first record and could go on

behind the last one, there must be additional information about the beginning of

the first and the ending of the last event spell. These information must be given in

ifile2 and ifile3.

From ifile2 and ifile3 only the first records are used. That of ifile2 must give

the number of records an event spell has occurred already before the first record



 PAGE 168

of ifile1 and that of ifile3 must give the number of records an event spell is still

going on after the last record of ifile1. Only the integer parts of the field ele-

ments of ifile2 and ifile3 are used.

The exact use is as follows: If the value of the first record of ifile1 is an event,

then (the integer part of) the number of ifile2 is added to the length of the event

spell which this first record belongs to. And if the value of the last record of

ifile1 is an event, then (the integer part of) the number of ifile3 is added to the

length of the event spell which this last record belongs to.

Normally the values needed for ifile2 and ifile3 are unknown, because there are

no data before and after the used time period. So a more or less realistic estima-

tion must be used. For getting such estimations see function durations0

(page 169).

Use -null instead of ifile2 and ifile3 if all the numbers should be 0. (See

description of function null (page 50).)

After calling the function the user has to give a factor  and a summand  which

can be used for transforming the input data to more common units. If for example

in ifile1 temperatures in Kelvin are stored, but the quantity classes should be

given in degree Celsius, then a good choice is  and . If in

ifile precipitations in meter per second are stored, but the quantity classes

should be given in millimetre per day, then a good choice is  and

. If no transformation on the input data should be done the user must set

 and .

Then the user has to give a lower boundary  and an upper boundary  to

define an event. If for example dry spells are considered, the lower boundary

could be 0 of less and the upper one could be 1 millimetre per day. If extreme

heat events are investigated, the lower boundary could be 30 degree Celsius and

the upper one could be 100 degree Celsius.

A value  is an event if and only if

b a

b 1= a 273.15–=

b 8.64e7=

a 0=

b 1= a 0=

c1 c2

y

c0 a by+≤ a by+ c1<∧



 PAGE 169

Afterwards the user has to give the code numbers which should be used while

writing ofile1, ofile2, and ofile3.

Several duration classes could be analysed simultaneously by this function.

Therefore the number of duration classes must be given now.

Then for every event spell duration class a level number (which is only used for

writing the headers) and the minimal and the maximal length must be given. (A

maximal length of 0 means no upper limit.)

At the end the user has to give the length of the time periods which should be

considered separately. The length 0 means to consider all records together.

This function is creating a temporary file which is normally removed at the end.

But there are some cases in which this function has no chance to remove this file,

the most common is the killing of the process by the unix command kill -9. So if

this job should be killed, it should be done without the option -9. If this temporar-

ily file is not removed, the user should do it by hand. Therefore the name of this

file is printed to standard error.

The size of this file is approximately 2 times the number of records of ifile1 mul-

tiplied by the number of field elements per record.

So in the case of a very big ifile1 the user has to take care of the directory where

this file is created. This directory is $TMPDIR if such an environment variable exists

and its contains is really a directory. Otherwise it is /tmp.

durations0

ifile ofile1 ofile2

(“durations of events preparation”) Before reading the explanations to this func-

tions read that of function durations (page 166) first, please.

This function is doing the computations independent for every field element.

The estimation of the values for input file ifile2 and ifile3 of function durations

can be done by thinking the data file ifile1 as cyclic. Naturally this is only sensi-



 PAGE 170

ble if the date which would follow the date of the last record of ifile1 is the same

date than that of the first record of ifile1.

If the value of the first record of ifile1 is not an event a 0 is written into ofile1,

otherwise the length (in records) of the event spell around it is written into ofile1.

If the value of the last record of ifile1 is not an event a 0 is written into ofile2,

otherwise the length (in records) of the event spell around it is written into ofile2.

The typically combination of this function together with function durations could

be as follows:

ext durations0 ifile first.ext last.ext < durations.in
ext durations ifile last.ext first.ext ofile1 ofile2 ofile3 < durations.in



 PAGE 171

5.  References

[1] WMO-Nr. 306 Manual on Codes, Volume 1, International Codes, Part B - Binary

Codes.

[2] Press W. H., Saul A. Teukolsky, W. T, Vetterling, B. P. Flannery, 1992, Numerical

Recipes in C, Cambridge University Press, ISBN 0-521-43108-5.

[3] R.W.Preisendorfer, 1988: “Principal Component Analysis in Meteorology and

Oceanography”, Developments in Atmospheric Science,17.

[4] T.P.Buell, 1971: “Integral Equation Representation for Factor Analysis”,

J.Atmos.Science,28,1502-1505.

[5] Lehmann, E.L., 1986, Testing Statistical Hypothesis, 2nd ed., John Wiley &

Sons, New York, Chichester, Brisbane, Toronto, Singapore, ISBN

0-471-84083-1.



PAGE 172

6.  List of Functions

Information 38
shortinfo 38
info 38
longinfo 39
formatinfo 39
pipeinfo 39
pipeshortinfo 39
gribinfo 40
griddes 40
grads 40
nrec 40
nyear 41
nmon 41
ndate 41
ntime 41
ncode 41
nlevel 42
showyear 42
showmon 42
showdate 42
showtime 43
showcode 43
showlevel 43
countc 43
countcr 44
status 44

Formatted input and
output 44
input 44
inputsmp 44
inputext 45
inputsrv 45
inputlola 45
output 46
outputint 46
outputsmp 46
outputext 46
outputsrv 47
outputlola 47

Converting the
format 48
copy 48
copy2 48

Generation of files 49
weight0 49
weight1 50
null 50
const 50
consts 50
pi 51
e 51
for 51
random 52
randomnormal 52

Manipulating the
header 52
chdate 52
chtime 52
chyear 53
chmon 53
chday 53
chcode 53
chcodes 53
chlevel 53
chdispo1 54
chdispo2 54

Manipulating the
field 54
chsize 54
maskindexbox 55
masklonlatbox 55
normalize 56
shiftleft 56
shiftright 56
swapleftright 56
swaprightleft 56



 PAGE 173

swaptopbottom 57
swapbottomtop 57
break 57
break<n> 57
melt 57
meltall 58
melt<n> 58
enlarge 58
thinout 58
thinoutr 58

Manipulating the se-
quence of records 59
reverse 59
reverser 59
transpose 59
transposer 60
split<n> 60
merge<n> 60
mergedate2 61
replace 61
cat<n> 61

Selection 62
sel 62
selrec 62
selfirstrec 62
selfirstmidlastrec 63
seldate 63
selfirstdate 63
selfirsttime 63
selyear 64
selmon 64
selseas 64
selday 64
selcode 64
selfirstcode 65
selcode<n> 65
sellevel 65
seldispo1 65
seldispo2 66
selindexbox 66
sellonlatbox 67
selfile<m>of<n> 67
selfile<l>and<m>of<n> 67
selfile<k>and<l>and<m>of<n> 68

Missing values 68
setctomiss 68
setmiss 68
setmissc 68
setnotmiss 69
setnotmissc 69
countmiss 69
countmissr 69
countnotmiss 69
countnotmissr 70
packr 70
unpackr 70

Sorting and ranking 71
sort 71
sortr 71
rank 71
rankr 71

Arithmetic 72
sum 72
sum<n> 72
sumr 72
add 72
addc 72
addcc 73
sub 73
subc 73
subfromc 73
subcc 73
subfromcc 74
minus 74
mul 74
mulc 74
mulcc 74
div 75
divc 75
divcc 75
inverse 75
mod 75
modc 76
power 76



 PAGE 174

Maximum and
Minimum 76
max 76
max<n> 77
maxr 77
maxabsdiffr 77
yearmaxs 77
monmaxs 78
daymaxs 78
min 78
min<n> 78
minr 79
yearmins 79
monmins 79
daymins 79

Mathematical
functions 80
sign 80
exp 80
log 80
log10 80
sin 81
cos 81
tan 81
asin 81
acos 81
atan 82
atan2 82
conj 82
re 82
im 82
arg 83
retocomplex 83
imtocomplex 83
recttocomplex 83
complextorect 83
poltocomplex 84
complextopol 84

Comparisons and
Logic 84
eq 84
eqc 84
neq 85

nec 85
le 85
lec 86
lt 86
ltc 86
ge 86
gec 87
gt 87
gtc 87
and 88
or 88
not 89

Conditions 89
ifthen 89
ifthenc 90
ifnotthen 90
ifnotthenc 90
ifthenelse 90
ifthenelsec 91
ifthencelse 91
ifthencelsec 91

Geometry 91
dotprod 91
dotprodr 92
dotprodrw 92
norm 92
normr 93
normrw 93
dist 93
distr 93
distrw 94
rms 94
rmsr 94
rmsrw 94
normdotprod 94
normdotprodr 95
normdotprodrw 95

Means and averages 96
mean 96
avg 97
mean<n> 97
avg<n> 97
meanr 97
meanrw 97



 PAGE 175

avgr 98
avgrw 98
anom 99
anomr 99
anomrw 99
zonmean 100
zonavg 100
mermean 100
meravg 100
runmeans 100
runavgs 100
daymeans 101
dayavgs 101
5daymeans 101
5dayavgs 101
10daymeans 102
10dayavgs 102
monmean 102
monavg 103
monmeans 103
monavgs 103
seasmean 103
seasavg 104
seasmeans 104
rseasmeans 104
cseasmeans 105
crseasmeans 105
rcseasmeans 106
seasavgs 106
rseasavgs 107
cseasavgs 107
crseasavgs 108
rcseasavgs 108
yearmean 109
yearavg 109
yearmeans 109
yearavgs 109

Variances, correlations,
and co. 109
var0 110
var1 111
var0r 111
var0rw 111
var1r 112
var1rw 112
pooledvar<n> 112
stddev0 113

stddev1 113
stddev0r 113
stddev0rw 113
stddev1r 114
stddev1rw 114
2stddev0 114
2stddev1 115
2stddev0r 115
2stddev0rw 115
2stddev1r 116
2stddev1rw 116
covar0 116
covar1 117
covar0r 117
covar0rw 117
covar1r 118
covar1rw 118
cor 118
corr 119
corrw 119

Regression 120
regres 120
detrend 120
trend 121
subtrend 121
anomcoupl 122
anomcouplr 122
anomcouplrw 122

Tests, confidence inter-
vals, and co. 123
studentt 126
studenttinv 126
chisquare 126
chisquareinv 126
beta 127
betainv 127
meanstatist<n> 128
meansignif<n> 128
mean1test<n> 129
mean2test<n> 130
meanconfid<n> 130
meanstatist 131
meansignif 131
mean1test 132
mean2test 132



 PAGE 176

meanconfid 132
meandiffstatist 133
meandiffsignif 133
meandiff1test 133
meandiff2test 134
meandiffconfid 134
meandiffdiffstatist 134
meandiffdiffsignif 135
meandiffdiff1test 135
meandiffdiff2test 135
meandiffdiffconfid 136
pooledvarstatist<n> 136
pooledvarsignif<n> 137
pooledvar1test<n> 137
pooledvar2test<n> 138
pooledvarconfid<n> 139
varstatist 140
varsignif 140
var1test 140
var2test 141
varconfid 141
varquotstatist 141
varquotsignif 142
varquot1test 142
varquot2test 143
varquotconfid 144
regresstatist 145
regressions 145
regres1test 146
regres2test 147
regresconfid 147
corstatist 148
corsignif 149
cor1test 149
cor2test 150
corconfid 151

Empirical Orthogonal
Functions 152
eof 152
eofw 154
eofspatial 155
eofspatialw 155
eoftime 155
eoftimew 156

Fourier and spectra 157
fourier 157
spectrum 157

Interpolation 161
timeinterpolate 161
interpolate 161
contrast 164
griddesindexbox0 164
griddesindexbox1 164
griddeslonlatbox0 165
griddeslonlatbox1 165

Classes 165
classes 165
durations 166
durations0 169



 PAGE 177



PAGE 178

7.  Index of Functions

Numerics
10dayavgs 102

10daymeans 102

2stddev0 114

2stddev0r 115

2stddev0wr 115

2stddev1 115

2stddev1r 116

2stddev1rw 115, 116

5dayavgs 101

5daymeans 101

A
acos 81

add 72

addc 72

addcc 73

and 88

anom 99

anomcoupl 122

anomcouplr 122

anomcouplrw 122

anomr 99

anomrw 99

arg 83

asin 81

atan 82

atan2 82

avg 97

avg<n> 97

avgr 98

avgrw 98

B
beta 127

betainv 127

break 57

break<n> 57

C
cat<n> 61

chcode 53

chdate 52

chday 53

chdispo1 54

chdispo2 54

chisquare 126

chisquareinv 126

chmon 53

chsize 54

chtime 52

chyear 53

classes 165

complextopol 84

complextorect 83

conj 82

const 50

consts 50

contrast 164

copy 48

copy2 48

cor 118

cor1test 149

cor2test 150

corconfid 151

corr 119

corrw 119

corsignif 149

corstatist 148

cos 81

count 44

countc 43

countcr 44

countmiss 69

countmissr 69

countnotmiss 69

countnotmissr 70

covar0 116

covar0r 117

covar0rw 117

covar1 117

covar1r 118

covar1rw 118

crseasavgs 108

crseasmeans 105

cseasavgs 107

cseasmeans 105

D
datemerge2 61

dayavgs 101

daymaxs 78

daymeans 101



PAGE 179

daymins 79

detrend 120

dist 93

distr 93

distrw 94

div 75

divc 75

divcc 75

dotprod 91

dotprodr 92

dotprodrw 92

durations 166

durations0 169

E
e 51

enlarge 58

eof 152

eofspatial 155

eofspatialw 155

eoftime 155

eoftimew 156

eofw 154

eq 84

eqc 84

exp 80

F
for 51

formatinfo 39

fourier 157

G
ge 86

gec 87

grads 40

gribinfo 40

griddes 40

griddesindexbox0 164

griddesindexbox1 164

griddeslonlatbox0 165

griddeslonlatbox1 165

gt 87

gtc 87

I
ifnotthen 90

ifnotthenc 90

ifthen 89

ifthenc 90

ifthencelse 91

ifthencelsec 91

ifthenelse 90

ifthenelsec 91

im 82

imtocomplex 83

info 38

input 44

inputext 45

inputsmp 44

inputsrv 45

interpolate 161

interpolatem 165

inverse 75

L
le 85

lec 86

log 80

log10 80

longinfo 39

lt 86

ltc 86

M
maskbox 55

maskindexbox 55

masklonlatbox 55

max 76

max<n> 77

maxr 77

mean 96

mean<n> 97

mean1test 132

mean1test<n> 129

mean2test 132

mean2test<n> 130

meanconfid 132

meanconfid<n> 130

meandiff1test 133

meandiff2test 134

meandiffconfid 134

meandiffdiff1test 135

meandiffdiff2test 135

meandiffdiffconfid 136

meandiffdiffsignif 135

meandiffdiffstatist 134

meandiffsignif 133

meandiffstatist 133

meanr 97

meanrw 97



PAGE 180

meansignif 131

meansignif<n> 128

meanstatist 131

meanstatist<n> 128

meanwr 91

melt 57

melt<n> 58

meltall 58

meravg 100

merge<n> 60

mermean 100

min 78

min<n> 78

minr 79

minus 74

mod 75

modc 76

monavg 103

monavgs 103

monmaxs 78

monmean 102

monmeans 103

monmins 79

mul 74

mulc 74

mulcc 74

N
ncode 41

ndate 41

nec 85

neq 85

nlevel 42

nmon 41

norm 92

normalize 56, 84

normdotprod 94

normdotprodr 95

normdotprodrw 95

normr 93

normrw 93

not 89

nrec 40

ntime 41

null 50

nyear 41

O
or 88

output 46

outputext 46

outputint 46

outputintasc 46

outputlola 47

outputsmp 46

outputsrv 47

P
packr 70

pi 51

pipeinfo 39

pipeshortinfo 39

poltocomplex 84

pooledvar<n> 112

pooledvar1test<n> 137

pooledvar2test<n> 138

pooledvarconfid<n> 139

pooledvarsignif<n> 137

pooledvarstatist<n> 136

power 76

R
random 52

randomnormal 52

rank 71

rankr 71

rcseasavgs 108

rcseasmeans 106

re 82

recttocomplex 83

regres2test 147

regressignif 145

replace 61

retocomplex 83

reverser 59

rms 94

rmsr 94

rmsrw 94

rseasavgs 107

rseasmeans 104

runavgs 100

runmeans 100

S
seasavg 104

seasavgs 106

seasmean 103

seasmeans 104

sel 62

selcode 64

seldispo1 65

seldispo2 66



PAGE 181

selfile<k>and<l>and<m>of<n> 68

selfile<l>and<m>of<n> 67

selfile<m>of<n> 67

selfirstcode 65

selfirstdate 63

selfirsttime 63

selindexbox 66

sellonlatbox 67

shortinfo 38

showcode 43

showdate 42

showlevel 43

showmon 42

showtime 43

showyear 42

sign 80

sin 81

sort 49, 71

sortr 59, 71

spectrum 157

split<n> 60

stddev0 113

stddev0r 113

stddev0rw 113

stddev1 113

stddev1r 114

stddev1rw 114

studentt 126

studenttinv 126

sub 73

subc 73

subcc 73

subfromc 73

subfromcc 74

subtrend 121

sum 72

sum<n> 72

sumr 72

T
tan 81

thinout 58

thinoutr 58

timeinterpolate 161

transposer 60

trend 121

U
unpackr 70

V
var0 110

var0r 111

var0rw 111

var1 111

var1r 112

var1rw 112

var1test 140

var2test 141

varconfid 141

varquot1test 142

varquot2test 143

varquotconfid 144

varquotsignif 142

varquotstatist 141

varsignif 140

varstatistic 140

W
weight0 49

weights 50

Y
yearavg 109

yearavgs 109

yearmaxs 77

yearmean 109

yearmeans 109

yearmins 79

Z
zonavg 100

zonmean 100


