The PINGO! package

The documention of a software package of the DKRZ (Bundesstral3e 55, 20146
Hamburg, Germany) which allows for data processing on workstations with SIMPLE,
EXTRA, SERVICE, LOLA, and GRIB files.

by Jirgen Waszkewitz, Peter Lenzen, and Nathan Gillet

1. (Procedural INterface for Gris formatted Objects)

DISCLAIMER OF WARRANTY

Nor the authors nor the DKRZ make warranties,
expressed or implied, that the programs and data con-
tained in the software package arefreeof error, or are
consistent with any particular standard of merchanta-
bility, or that they will meet your requirementsfor any
particular application. They should not be relied on
for solving a problem whose incorrect solution could
result in injury to a person or loss of property. If you
do usethe programsor data in such a manner, it ison
your own risk. Theauthorsand the DKRZ disclaim all
liability for direct or consequential damages from
your use of the programs and data.

PAGE 4

TABLE OF CONTENTS:

1. Introduction 7

Getting started 8
2.1 File Formats 8

22 The calling sequence 12
2.3 Missing values 14
24 The*Filling up” of input filesand “enlarging” of input records 16

3. Advanced features 18
31 Protocol file 18
3.2 Combining different functions 19
33 Advanced standard input 21
34 Not required output files 22
35 The use of named pipes 23
3.6 Grid description files 24
3.7 The concept of areaweights 27
38 How to convert filesinto SIMPLE, EXTRA, SERVICE, LOLA, or GRIB? 30
39 How to transfer filesto other computers? 32
3.10 Computations for each level separately 34
311 About everlasting zombies, parent killing children, and other unimportant things 35

4, Thefunctions 38
41 Information 38

4.2 Formatted input and output 44

43 Converting the format 48

44 Generation of files 49

45 Manipulating the header 52

4.6 Manipulating thefield 54

4.7 Manipulating the sequence of records 59
48 Selection 62

4.9 Missing values 68

4.10 Sorting and ranking 71

411 Arithmetic 72

412 Maximum and Minimum 76

413 Mathematical functions 80

414 Comparisons and Logic 84

4.15 Conditions 89

4.16 Geometry 91

417 Means and averages 96

4.18 Variances, correlations, and co. 109
4,19 Regression 120

4.20 Tests, confidence intervals, and co. 123
421 Empirical Orthogonal Functions 152
4.22 Fourier and spectra 157

4.23 Interpolation 161

4.24 Classes 165

5. References 171
6. List of Functions 172
7. Index of Functions 178

PAGE 5

PAGE 6

1. Introduction

The PINGO! package provides many functions for standard post-processing of climate
data sets on workstations. A large range of computations from basic arithmetic over
statistics to spectral analysis and empirical orthogonal functions can very simply be
done by this package. This package, which is atotally new development of the DKRZ
in Hamburg (Germany), is designed for the operating system UNIX.

Contrary to many other existing tools which are related to only one file format this
package accept 5 different formats, namely SIMPLE, EXTRA, SERVICE, LOLA, and
GRIB. These formats are described in Section 2.1 “File Formats’ on page 8. However,
the user has not to care about the different input file formats, the program is able to

decide alone which format is on. The user has only to decide on the output file format.

Other advantages of the PINGO package are:

Missing values are supported. If avalue other than the default is desired, the user

just has to set an environment variable.
» Thisprogram can write a complete protocol of all calls.

» A dataset can easily be processed by several functions, without storing the interim
resultsin files. (No disk 1/O.)

» Clear error messages. If file I/O leadsto an error, the reason is printed, e.g. “No

space left on device”.

* No“silent waiting”. If afunction needs information from standard input, the pro-
gram always asks the user to typein the desired information, which is then acknowl-

edged with an “OK” message.
» No “seeks’ on the input and output files, so they can be named pipes.

* Itisvery easy for the author to add new functions. An increasingly large range of

functions will hence become available to the user.

1. (Procedural INterface for Gris formatted Objects)

PAGE 7

2. Getting started

2.1 FileFormats

Every input and output file is made up of a series of records. Each record of an input
filemust bein SSIMPLE, EXTRA, SERVICE, LOLA, or GRIB format. Theformats are
described further down. Every format is subdivided into different accuracies. 4 bytes or
8 bytes per number in the SIMPLE, EXTRA, SERVICE, and LOLA format and 1, 2, 3,
4,5, 6, 7, or 8 bytes per number in the GRIB format. (Constant GRIB fields aways

have an accuracy of 4 bytes.)

GRIB is a WMO standard for meteorological data sets and is described in [1]. Even
though no details of the GRIB format will be discussed here, two points should be
mentioned: Firstly GRIB is completely self-describing. This means that every GRIB
record contains not only information of the date, time, code, level, centre-1D, experi-
ment-1D, etc., but aso of the assigned grid, especially of its longitudes and latitudes.
Secondly it compresses the data set (with lost of information), which is normally done

by choosing an accuracy of 2 bytes per number.

The disadvantage of the GRIB format is its complexity: Because all meteorological
data sets can be described by GRIB, it is very difficult to read and to write it. So if the
user wants to write an own FORTRAN program to process the records, the GRIB for-
mat should be changed into a very simply readable format. For this purpose two for-
mats were developed by the Meteorologisches Institut der Universitét Hamburg. The
first format developed there was the EXTRA format which is described later on. Its
advantage: It can very easily be read and written by a FORTAN program. But caused
by its simplicity it contains only afew describing variables: The date, code, level, and

field size. It does not contain any grid description.

Because it was felt by the scientists of the Meteorologisches Institut der Universitét
Hamburg that thisis too less, they created a new format called SERVICE. This format
contains beside the time variable a little description of the grid: The number of longi-

tudes and of latitudes.

Because the author of this package felt that in some situations, especially when

processing regions instead of the whole globe, it would be nice to have an easy format

PAGE 8

containing also acomplete grid description, he created the LOLA format. Since thereis
a wide range of possible grids he decided to restrict the format to longitude/latitude
grids. The name LOLA stands for LOngitude/L Atitude.

The author aso created the SIMPLE format which is free of any self describing. Its

purpose isthe “misuse” of this package for other, not meteorological, purposes.

Every SIMPLE, EXTRA, SERVICE, or LOLA record is either real or complex
(whereas a GRIB record is always real). They all consist of a header containing the

description part and of afield.
A SIMPLE record can be read in afortran program by

READ(10) NSI ZE
READ(10) (FIELD(ISI ZE), | Sl ZE=1, NS ZE)

An EXTRA record can be read in afortran program by

READ(10) | DATE, | CODE, | LEVEL, NSI ZE
READ(10) (FIELD(ISI ZE), | Sl ZE=1, NSI ZE)

A SERVICE record can be read by

READ(10) | CODE, | LEVEL, | DATE, | TI ME, NLON, NLAT, | DI SP1, | DI SP2
READ(10) ((FIELD(ILON, I LAT), I LON=1, NLON), | LAT=1, NLAT)

A LOLA record can be read by

READ(10) | DATE, | TI ME, | CODE, | LEVEL, NLON, NLAT, LLON, LLAT, | DI SP1, | DI SP2
READ(10) (XLON(ILON), | LON=1, LLON)

READ(10) (XLAT(|LAT), | LAT=1, LLAT)

READ(10) ((FIELD(ILON, | LAT), | LON=1, NLON), | LAT=1, NLAT)

If the accuracy is 4 bytes per number, the variables should be declared respectively as

I NTEGER*4 NSI ZE
REAL* 4 FI ELD(MSI ZE)

and

I NTEGER*4 | DATE, | CODE, | LEVEL, NSI ZE
REAL* 4 FI ELD(MSI ZE)

and

| NTEGER*4 | CODE, | LEVEL, | DATE, | TI ME, NLON, NLAT, | DI SP1, | DI SP2
REAL*4 FI ELD(MBI ZE)

PAGE 9

and

| NTEGER* 4 | DATE, | TI ME, | CODE, | LEVEL, NLON, NLAT, LLON, LLAT, | DI SP1, | DI SP2
REAL*4 XLON(MLON), XLAT(M.AT), FIELD(MBI ZE)

with nsi zE < msl zE, NLON < MLoN, NLAT < MAT. |f the record is complex, then the variables

must be declared as cowLex 8 instead of rReaL* 4.

In general, on the SUN stations | NTeGeR IS the same as | NTEGEr 4, REAL S the same as

REAL* 4, and covpLEX IS the same as covpLEX* 8.

If the accuracy is 8 bytes per number, the variables should be declared as | NTEGER+ 8

instead of | NTEGER* 4, REaL*8 INstead of reaL*4, and cowpLex* 16 instead of cowpLex+s. Nor-

mally on a sun station a bouBLE PREC SI oN IS the same Size as a reaL* 8, and a bousLE

cowLEX IS the same size as a cowrLex+16. (If thisis the case, bousLE PRECI st on and pousLE

cowLex should be used to let the compiler chose the optimal routine in the case of

generic functions.)

The meaning of the variables are:

| DATE Thedateas YYYYMMDD with Y =year, M=month or season, D=Day. The months
and seasons are coded as 01=January, 02=February, ... , 12=December, 13=season
DJF (December,January,February), 14=season MAM (March,April,May), 15=season
JIA (June,duly,August), 15=season SON (September,October,November)). e.g.
1491230 for the 30th of December of year 149, 1501300 for the northern hemispheric
winter beginning December of year 149 and ending February of year 150. (EXTRA,
SERVICE, LOLA)

I TI ME The time as HHMM with H=hour and M=minute. (SERVICE, LOLA)

| CODE The code as described in the DKRZ Technical Report No. 6. (EXTRA, SERVICE,
LOLA)

| LEVEL Thelevel. (This can be model-level (hybrid-level) or pressure level.) (EXTRA,
SERVICE, LOLA)

NSI ZE The size of the datafile. (SIMPLE,EXTRA)

NLON The number of longitudes. (SERVICE,LOLA)

NLAT The number of latitudes. (SERVICE,LOLA)

LLON (="listed longitudes”) The size of the longitude description record. Up to three differ-
ent values are possible. LLON=NLON means all single longitudes are given, LLON=2
means longitudes are equidistantly distributed and only the first two ones are given,
LLON=0 means longitudes are the same as in the record before. If a program needs the
longitudes, in all three cases the code

| F(LLON. EQ 2) THEN
DO I = 3, NLON
XLON(1) = XLON(1) + (1-1) * (XLON(2)-XLON(1))
ENDDO
ENDI F
constructs the array xLoN. (LOLA)

PAGE 10

LLAT (“listed latitudes’) The size of the latitude description record. Up to three different
values are possible. LLAT=NLAT means all single |atitudes are given, LLAT=2 means lat-
itudes are equidistantly distributed and only the first two ones are given, LLAT=0
means latitudes are the same as in the record before. If a program needs the latitudes,
use program code anal ogous to the one given at the explanation of LLON to construct
the array XLAT. (LOLA)

XLON The array of longitudes. (LOLA)
XLAT The array of latitudes. (LOLA)
Fl ELD Thefield. (EXTRA, SERVICE, LOLA)

| DI SP1 (“Dispo #1”) For the users disposal. Can be used for example to save a centre ID or
what ever the user likes. (SERVICE,LOLA)

| DI SP2 (“Dispo #2") For the users disposal. Can be used to save an experiment number or
what ever the user likes. (SERVICE,LOLA)

Functions which require the fields demand the same field size of all simultaneously
read input records. Many of these functions allow fields of different sizesin seriesin
one file, e.g. if they represent different regions of the globe. However, some functions
cannot work with such input files: They “think” of an input file as containing different
realisations of the same spatial field. An example of such a function is the one which
computes the mean over all time steps. These functions require the same field size over
all records, and have no meaning when applied to files whose records represent several
different regions of the globe. A call of one of these functions in such cases would

result in an error message.

Thefield size 1 is an exception and will be discussed in Section 2.4 “The “Filling up”

of input filesand “enlarging” of input records’” on page 16.

Thereisno rule governing the sequence of recordsin afile, but it is convention to order
the records by date. Records for the same date are then ordered in such a way that all
records of the same code are immediately adjacent, and all records of the same date

and code are ordered by ascending or descending level.

PAGE 11

2.2 Thecalling sequence

The program can be called by 24 different names. The name used determines the out-

put file format and the accuracy:

Used name | Output file format

pure The output format is PURE

i (IEEE format)

snp
snp4 The output format is SIMPLE
snp8
ext

ext 4 The output format is EXTRA
ext 8

Srv
srv4 The output format is SERVICE

srv8

lola
| ol a4 The output format is LOLA
| ol a8

grb
grbl
gr b2
gr b3
grba The output format is GRIB
gr b5
gr b6
grb7
gr b8

The PURE format has no headers and no FORTRAN blocking. PURE files are just a
series of rReaL (Or cowpLEx) NnUMbers. They cannot be used as input files for this program,

but are useful for plotting software, e.g. gr ads, pvwave, €fC.

If the last character of the program name is a number, it determines the accuracy of the
output file in bytes. If no accuracy is explicitly demanded by the user, the program
choosesfor every record the greatest accuracy of all corresponding input records. (If no

input file is given, the smallest accuracy available for thisformat is used.)

The first argument after the program name must be a function name. The different

functions are introduced | ater.

After the function name all input file names must be given, followed by all output file

names.

Example: To add the two filesifilel andifil e2 and store the result in of i | e just

type:

PAGE 12

ext add ifilel ifile2 ofile
The program then does the addition, and after finishing prints something like

ext add: Processed 4 records.

Example: To get information on the contents of fileifiie just type:

ext infoifile

The program now prints something like

REC : DATE CCOD LEVEL S| ZE M NI MUM MVEAN MAXI MUM : M SS
1: 1300 1 1 3 : 1.000e+00 2.667e+00 4.000e+00 : 0
2 1400 1 1 3 : 3.000e+00 3.667e+00 4.000e+00 : 0
3 1500 1 1 3 : 4.000e+00 5.000e+00 6.000e+00 : 0
4 : 1600 1 1 3 : 7.000e+00 8.000e+00 9.000e+00 : 0

ext info: Processed 4 records.

Because the function i nfo has no output file, the name of the program is ignored, i.e.

srv info Ol grb info areabsolutelyidentical toext info.

Example: To subtract the constant 273. 15 from fileifil e and store the result in

of i | e just type:
ext subc ifile ofile

Then the program prints (to standard error):

ext subc: Enter constant!
ext subc>

and the user has to type in the constant and press return. Then the program prints (to

standard error)

0

does the calculations and prints (to standard error)
ext: Processed 4 records.
or whatever the number of records in the input file was.

Some remarks to GRIB records: There are three different kinds of functions: Those
with the lowest requirement do not need the array but only the header, examples are

sel code fOr selecting a code or chdat e for changing the date. If no change in the output

PAGE 13

format is desired, i.e. the program is called by the name “grb”, then these functions
(should) except al GRIB records and do not decompress the field. Functions of the
second kind need the field, like add to add two record, or rean to compute the mean over
al records. They cannot read all GRIB records, especially not records containing
spherical harmonics and some kinds of data packing. And the most demanding func-
tions need not only the field but also the grid information, like reanr to compute area
weighted means of the records. They can read a smaller subset of all possible GRIB

records only compared to the previous functions.

2.3 Missing values

In GRIB records the missing values are stored via a bit map in the GRIB header, so no

specia value acts as amissing value.

In SIMPLE, EXTRA, SERVICE, and LOLA records there are two different missing
values: The value 9.E9 is used for recordsin 4-byte type, and 9.E99 is used for records
in 8-byte type. To change these values, just set the environment variables M SSVAL4 or
M SSVALS. If you do not know which type you are using, you can set both values via
the environment variable M SSVAL. (But remember, if your missing value is too big to
be stored in a REAL* 4, e.g. 9.E99, only the value for the 8-byte type is changed.) For

example:

M SSVAL=9999
export

in aBourne-Shell and

setenv M SSVAL 9999

in aC-Shell.

The use of the missing value is shown in the following tables, where for each operation
one table is printed. The operations are applied to arbitrarily number a, b, the special
case 0, and the missing value miss. Grey fields are of particular interest. For example

the table named “ addition” shows that the sum of an arbitrarily number a and the miss-

PAGE 14

ing value is the missing value, and the table named “multiplication” shows that 0 mul-

tiplied by the missing value resultsin O.

addition b miss
a at+b miss
miss miss miss
subtraction b miss
a ab miss
miss miss miss
multiplication b 0 miss
a a*b 0 miss
0 0 0 0
miss miss 0 miss
division b,bz0 0 miss
a alb miss miss
0 0 miss miss
miss miss miss miss
maximum b miss
a max(a,b) a
miss b miss
minimum b miss
a min(a,b) a
miss b miss

The handling of missing values by the operations “minimum” and “maximum” may be
surprising, but it turned out that the definition given here is more related to what is
expected in practice. Mathematical functions (e.g. log, sgrt, etc.) return the missing

vaueif

* Anargument isthe missing value

or

* Anargument is out of range

All statistics functions ignore missing values, treating them as not belonging to the
sample, with the side-effect of a reduced sample size. An artificial distinction is made
between the notions mean and average. The mean is regarded as a statistics function,

whereas the average is found ssmply by adding the sample members and dividing the

PAGE 15

result by the sample size. For example, the mean of 1, 2, miss, and 3 is (1+2+3)/3=2,
whereas the average is (1+2+miss+3)/4=miss/4=miss. If there are no missing valuesin

the sample, the average and mean are identical.

2.4 The*Fillingup” of input filesand “enlarging” of input records

If the called function needs more records from an input file than are avail able, the func-
tion uses a copy of the last record read as often as necessary. This “filling up” stops
when all theinput files are at end of file. The advantage of this “filling up” isthat afile
containing a single record behaves like a constant array. Let, for example, two input
files, ifiter and ifile2, be given. Let ifiie1 consists of 12 records and ifile2 of 1
record. Let usthink of i fi1e1 asmonthly meansanditiie2 asthe annual mean. To sub-
tract the annual mean from every monthly mean and to store the result in ofi1e, only

the following must be typed:

ext sub ifilel ifile2 ofile

That's al! The program prints on standard error the message:

ext sub: Filling up file ifile2 by copying the |ast record

Thislast record isthe only record, in this case. A graphical demonstration can be found
in Figure 1 on page 17 (Advanced users can read the hints for function nui1 (page 50)

to suppress “filling up”.).

The other automatic adaptation of input records is for fields of size 1 if the chosen
function requires the field. These records are “enlarged” to the size of the other input
fields which are not 1. Remember: They must all have the same size. Let, for example,
thetwo input filesifite1 anditile2 begiven. Letifiie1 consist of records of field size
2048 anditiie2 of recordsof field size 1. Let usthink of i fi1e1 asaglobal field and of
ifile2 asitsglobal average. To subtract the global average from the spatial field and to

storetheresult inofi e, only the following must be typed:

ext sub ifilel ifile2 ofile

The program prints on standard error the message:

ext sub: Enlarging record(s) in file ifile2 by copying the one existing
el enent

PAGE 16

ifilel ifile2 ofile

REC 1 REC 1 REC 1
REC 2 ” REC 2
REC 3 ” REC 3
REC 4 ” REC 4
REC 5 ” REC 5
REC 6 ” REC 6
REC 7 . > REC 7
REC 8 ” REC 8
REC 9 ” REC 9
REC 10 ” REC 10
REC 11 » REC 11
REC 12 ” REC 12

ifilte2 is filled up to a length of 12
records by copying the last record,

FIGURE 1. “Filling up” afile by copying the last record.

Even though this “enlarging” is done again for each record, the warning is only printed

once, to prevent an overfull screen. A graphical demonstration can be found in Figure 2

on page 17.
ifilel
[Elem.1 [Elem. 2 [Elem 3 [Blem 4| .. | Elemn|
ifile2 ifile2 isenlarged to
[Bem1 | > | > | > | . | > | <« aszeofnby copy-
\l/ ing the one existing
ofile
|Elem.1 [Elem.2 [Elem.3 | glen.4a| .. | Elemn|

FIGURE 2. “Enlarging” arecord by copying the one existing element.

PAGE 17

3. Advanced features

3.1 Protocaol file

It is possible to make the program write a protocol. To do this, the environment varia-

ble proTocoL must be set to afile name. For example:

PROTOCOL=/ nf / k/ k204099/ pr ot ocol
export PROTOCOL

in aBourne-Shell and

set env PROTOCOL / nf/ k/ k204099/ pr ot ocol

in a C-Shell. Every time the program is called and executed (assuming the syntax is
correct, and the function exists) the protocol is taken and appended to thisfile. Always
give the complete file name, including the path, not just a file name like “protocol”,

otherwise the protocol will always be written in the current directory.

The protocol is an ascii file and can be revisited when the user needs to know of what

he actually computed.

An entry in the protocol filelookslike this:

(20931) 95-12-06 15:37:35 started in /nf/k/k204099/ dat as:
ext add ifilel ifile2 ofile

(20931) 95-12-06 15:37:36 Processed 4 records.

(20940) 95-12-06 15:43:32 started in /nf/k/k204099/ dat as:
ext infoifile

(20940) 95-12-06 15:43:33 Processed 4 records.

(21720) 95-12-06 15:53:25 started in /nf/k/k204099/ dat as:
ext subc ifile ofile

(21720) 95-12-06 15:55:16 input val ues: 273.15

(21720) 95-12-06 15:55:16 Processed 4 records.

(22003) 95-12-06 16:02:35 started in /nf/k/k204099/ dat as:
pure copy ifile ofile

(22003) 95-12-06 16:02: 36 Processed 4 records.

The numbers in the brackets are the process ID’s. They are of interest in situations
where the user is doing severa calculations at the same time, so that it is clear which

message belongs to which program call. The process ID is followed by the date, time

and action that is being recorded.

If values other than the default missing values are used, thisis also written into the pro-

tocol file.

PAGE 18

A user who wants to kill a process by using the unix command ki 11 should not use the

-9 option to enable the process to write its termination note into the protocol file.

3.2 Combining different functions

If acomputation must be donein several steps, it isnot necessary to save al the interim
results on disk between the different calls. Furthermore, on a multiple processor
machine it is possible to do the computations in parallel and alow the processes to

communicate by internal pipes. The calling sequenceis straight forward.

First Example: To compute mean after selecting code 167 of i ti1e and store the result

inofile, the user could type

ext selcode ifile temp

ext mean tenp ofile BAD EXAM PLE '

rmtenp

The way to combine the functions sel code, for selecting a code, and year neans, for com-

puting the annual means, is asfollows:

ext nean -selcode ifile ofile PREFERRED SOL UT|ONI

The program would write

ext nean: Started child process “ext(2) selcode ifile (pipe 2.1)"
ext (2) selcode: Enter code!
ext (2) sel code>

The user has now to type in the code number 167 and the computer prints

g((t(Z) sel code: Processed 1000 records.

ext mean: Processed 100 records.

What happened? The program created a child process which behaves like the com-
mand ext selcode ifile (pipe 2.1). The(2) inext(2) which was printed on the screen
isthe position of the - sel code in the argument list of the calling sequence and is needed
to easily identify the child in situations where there is more than one child. (pi pe 2.1) is
the output file of the sel code function and is really an interna pipe. The other end of

this pipe acts as the input file of the function nean.

PAGE 19

The general rule for combining functionsisasfollows: If, instead of an input file name,
there is something beginning with “-*, the program assumes that this “-“ is immedi-
ately followed by a function name, which itself is followed by its input file names, all
separated by blanks. This function is started as a child process, and every output file of

this child is substituted for an input file of the parent function.

It is possible to combine functionsto an arbitrary depth of levels: Let usassume that in
the first example only the mean of the years 1950 to 1979 is to be subtracted, not the
mean over al records of the desired code. Before computing the mean, the records con-
taining a year between 1950 and 1979 must be selected by the function sel year. The

combined call could be

ext nean -selyear -selcode ifile ofile

The program then prints something like

ext nean: Started child process “ext(2) selyear -selcode ifile (pipe 2.1)".
ext (2) selyear: Started child process “ext(3) selcode ifile (pipe 3.1)"
ext (3) sel code>

The user has now to type in the code number 167 and the computer prints

(014
ext (2) selyear: Enter start year and end year
ext (2) selyear>

The user has now to type in 1950 1979 and the computer prints

ext (3) selcode: Processed 1000 records.
ext (2) selyear: Processed 100 records.
ext mean: Processed 30 records.

The last example shows how complex formulae can be calculated in one call. Asafur-

ther example, let us assume that the correlation of two time series is to be estimated

without assuming normally distributed samples. The formulais

n

~— 3 (RO -R()? 0
=1

(n~°’—n)/6i

where n isthe length of thetime seriesand R() isthe range of the i -th observation of
time series | = 1,2, for example for observations (4.4,5.1,5.6,2.3,5.1,7.8) the
assigned ranks are (2, 3.5,5,1,3.5,6) , because 2.3 is the greatest number, 4.4 the

PAGE 20

2nd greatest, 5.1 the 3rd and 4th greatest number, etc. If the time series are stored in the
filesifiter andifile2 and if the result should be stored in ofile, then the call of the

functions could be

ext divc -sum-sqr -sub -rang ifilel -rang ifile2 ofile

(Thiskind of notation is similar to what is called “Polish notation”.) The function di vc
(division by a constant) will ask for aconstant and the value for (n3—n) /6 should be
typed in. The user then hasto typein thevalue of (n3—n) /6. Five child processesare

started, the dependencies of them are indicated in the following table.

Pos: 1 2 3 4 5 6 7 8 9
ext dive -sum -sgr -sub -rang ifile -rang ifile ofile
1 2
-rang ifile -rang ifile
1 2
(pipe 5.1) (pipe 7.1)
-sub (pipe 5.1) (pipe 7.1)
(pipe 4.1)
-sqr (pipe 4.1)
(pipe 3.1)
-sum (pipe 3.1)
(pipe 2.1)
| dive (pi pe 2.1) ofile

3.3 Advanced standard input

In some situations, the user might wish to type the standard input in at the command
line, before calling the function. This can usually be done quite easily, by using “<<* to
redirect the standard input to the shell

ext info -subc ifile <<eo
273. 15
eoi

Or the user can redirect the standard input from afile, which is sensible for functions

requiring alot of standard input. Thisis done using the “<* sign, asis shown below:

ext info -subc ifile < input

The file i nput must then contain the numbers. N.B. Anything written after an initial

number or any line which does not start with a number is treated as a comment.

PAGE 21

However, if several processes are started from within one command line, this proce-
dure does not work: It is not clear which of the processes involved is picking up the
redirected standard input. The following two command lines are examples of such situ-

ations:

ext info -subc ifile | nore BAD EXAMPLEI

Both processes, ext and nor e, are picking up data from the standard input channel.

ext sub -selrec ifilel -selrec ifile2 ofile

In this example, where selected records of ifile1 anditile2 are to be subtracted, it is
unpredictable which child process (ext(2) selrec ifilel (pipe 2.1) OF ext(4) selrec

ifile2 (pipe 4. 1)) Will bethefirst to ask for the start and end record numbers.

Hence, a better tool than “<<" is needed for redirecting the standard input. This tool
exists, and is very simple to use: Just type the numbers required by each function

directly after the function name, dividing them by commas, e.g.

ext info -subc,273.15 ifile | nore PREFERRED SOL UTlONI

and

ext sub -selrec,1,12 ifilel -selrec, 13,24 ifile2 ofile

PREFERRED SOLUTIONI!

If too few numbers are given, the function switches from reading the command line

numbers to reading the standard input. Excess given numbers are ignored.

3.4 Not required output files

Some functions produce more than one output file. If the user is not interested in all of
them, he might type “-” instead of an output file name. The “-” has the same effect as

the file name dev/ nul 1, except that it saves some computation time.

For example, if the user wantsto split thefileiti1 e seasonally and store theresult in the
files ofile.djf.ext, ofile.mamext, ofile.jja.ext, ofile.son. ext he can use the function

splitseas.

PAGE 22

ext splitseas ifile ofile.djf.ext ofile.mamext ofile.jja.ext ofile.son.ext

But if heisonly interested in winter and summer, he could type

ext splitseas ofile.dfj.ext - ofile.jja.ext -

If not all of the output files of a function which is started as a child process should be
used by the parent function (see Section 3.2 “Combining different functions’ on
page 19), put the functions selfile<nrof<n> (pPage67) resp. selfile<l >and<mpof <n>
(page 67) resp. sel fi | e<k>and<l >and<nrof <n> (page 68) between the pipes.

3.5 Theuse of named pipes

In some situations, the user may wish to have named pipes as input or output files. If,
for example, he wants to create two pipes with the names pi pe1 and pi pe2, he just has

to type

nmknod pi pel p
nmknod pi pe2 p
nknod iS @ unix command to create special files like pipes. If the user now prints a

“long” filelist by typing1s -1, he seesthe following entriesin thelist of files:

prwrwrw 1 k204099 0 Jan 10 15:25 pipel
prwrwrw 1 k204099 0 Jan 10 15: 25 pipe2

The“p” at the left indicates a pipe.

To prevent disturbances by other users, he should take away the read and write permis-

sion of the group and others with the unix command chnod go-rw pi pe[12] .

Once the pipes are created they can be used as often as desired, BUT BEFORE
USING A PIPE A SECOND TIME, IT SHOULD BE ENSURED THAT THERE
ARE NO PROCESSES STILL WRITING TO OR READING FROM IT!
Because at the same time there should at most one process read from the pipe and at
most one process write on the pipe. Otherwise one get typically “ERROR! File
<pipename> has wrong format!” The easiest way to kill al processes writing to or

reading from a pipe is to remove the pipe and create it again.

PAGE 23

The reading process and the writing process are synchronizing themselves so that the
reading process reads from the pipe with the same speed than the writing process
writeson it. But if no processiswriting on the pipe, areading process would sleep (but
not stop!), and if no process is reading from the pipe, a writing process would sleep

(and again: not stop!).

Imagine now that the user has to compute the monthly means of the daily minimum
temperature, given a number of 12-hour data sets. Imagine further that the input data
fileistoo large to be stored on his machine, but is available on another machine called
schauer, and that the result is to be stored on a machine called 1 ocal . Provided the user
has a . netrc file in his home-directory with the login and password of the machine

schauer, hecould type

ftp schauer <<eoi &

get ifile pipel

qui t

eoi

ext monneans -daym ns pipel pipe2 &
rcp pipe2 local:ofile &

wai t

It is important to let all the processes involved run concurrently, but the calling

seguence is unimportant.

And again, because it isatypical source of error:

EXCEPT FOR THE TWO DESIRED PROCESSES THERE
MUST BE NO OTHER SLEEPING OR ACTIVE PROCESSES

The easiest way to ensure thisis to remove the pipe and create it again.

3.6 Grid description files

In some situationsit is necessary to give adescription of agrid. These situations are

* the change of aformat from the SIMPLE, EXTRA, or SERVICE format to the
LOLA format as described in Section 3.8 “How to convert filesinto SIMPLE,
EXTRA, SERVICE, LOLA, or GRIB?’ on page 30

PAGE 24

 functions that need the grid information, for example gr ads (page 40) to produce a
grads description file, sel 1 onl at box (page 67) to select abox in longitude and latitude
coordinates, or wei ght 0 (page 49) to construct aweight files as described in

Section 3.7 “The concept of areaweights’ on page 27

» thefunctioninterpol ate (page 161) which interpolate fields from one grid to

another.

A grid description file is an ASCII formatted file. The first and second entries in these
files are the numbers of longitudes and latitudes of the grid, followed by a description
of the longitudes and then followed by a description of the latitudes. Hence only longi-
tude/latitude grids can be described in a grid description file. The description of the
longitudes (latitudes) starts with the number of “listed longitudes’, that is the number 2
if the longitudes (latitudes) are equidistant, or again the total number of longitudes (lat-
itudes). In the case of equidistance the first 2 longitudes (latitudes) are listed, in the
other case all longitudes (latitudes) are listed. Longitudes are always listed from west

to east, latitudes may be in descending or ascending order.

For some standard resolutions there are existing “ready to use” grid description files.
They can be found in the directory gri ds, a subdirectory of the directory containing the
executable program. Before continuing, it is best to set an environment variable like

cr ps With this directory name. Use the command

whi ch ext

to find the directory of the executable program.

In this directory, henceforth referred to as sari ps, are some useful files. All their names
begin with a grid name. The grid names are t21, t42, t106, r72x36, r72x37, r144x73,
r180x90, r 180x91, r 360x180, r 360x181, r 720x360, r 720x361, Where t <n> indicates a Gaussian
grid and r <mex<n> a regular grid with <m> longitudes and <n> latitudes. There are 2

files per grid; for example, for the T21 grid there are the files

t21.grid. asc
t21.weights.lola

The first one is the grid description file of a T21 grid. The second is a weight file.
Weight files are explained in the Section 3.7 “ The concept of areaweights’ on page 27.

PAGE 25

The contents of t 21. gri d. asc are

Gid Description File

(Comments start at non digit characters and end at end of |ine)

First part: The dinensions.

64 32 = Nunber of longitudes and |atitudes

Second part: The |isted |ongitudes.

2 neans equi di stant |ongitudes

0. 000000 5.625000 = Most western and second nost western |ongitude

Third part: The listed |atitudes.

32 nmeans all 32 latitudes are given in the following |ist:
85.761 80.269 74.745 69.213 63.679 58.143 52.607 47.070 41.532 35.995
30.458 24.920 19.382 13.844 8.307 2.769 -2.769 -8.307 -13.844 -19.382

-24.920 -30.458 -35.995 -41.532 -47.070 -52.607 -58.143 -63.679 -69.213 -74.745

-80.269 -85.761

The function gri ddes (page 40) can be used to print the grid description file of LOLA
and GRIB files.

In the “ready to use” grid description files the latitudes are given from north to south.
The regular grids with an odd number of latitudes and the Gaussian grids have the first
longitude exactly at 0°. The grids r<m>x<n> with an even number <n> of latitudes
have the first longitude at (180/<n>)°. (The ideaisthat values on regular grids with an
even number of latitudes are the means of boxes. The western borders of the boxes of
longitudes of index 1 are therefore 0°.) The longitudes are equally distributed from
west to east. The following figure illustrates the situation for aregular grid with an odd

number of latitudes on the left, and for an even number of |atitudes on the right.

NORTH

m‘ 16 26 36
e o0 0
e |0 ®

OO

FIGURE 3. Thelocation of thegrid pointsof regular grids. On theleft, thecirclesrepresent the
grid pointsfor a grid consisting of an odd number of latitudes, and on theright, for an even
number of latitudes. The number pairsbesidethecirclesarethelongitude and latitude indexes.

The use of grid description filesis asfollows: Let the user for example wishes to select
abox given in longitude and latitude coordinates. The function sel 1 onl at box (page 67),

which is doing this job, asks for a complete grid description if the input file does not

PAGE 26

contain the grid information, that is it is SIMPLE, EXTRA, or SERVICE. Assuming

theinput fileifiie. ext isin T21 the user could type

cat $GRIDS/t21.grid.asc - | lola sellonlatbox ifile.ext ofile.lola

and press cont rol - D &ter finishing the input of the box coordinates.

3.7 The concept of area weights

What are area weights? - Typically in a climate data set of the globe or a part of the
globe the desired physical quantity is given on a grid: One single point represents a
mean of a box around it. These boxes are typicaly of different sizes, because the grid
points are of varying distance. Even if the grid points have the same longitudinal and
latitudinal distance the real distances between them isvarying: The longitudes are very
close together near the poles and widely spaced at the equator. For example the dis-
tance between two longitudes at 60°N isonly half aslarge as at the equator, because the

cosine of 60° is0.5.

While computing the global mean in this example a value at the equator must be
weighted twice as much as avalue at 60°N. The ideais now to assign every field ele-
ment of a record an area weight, which is the size of the area represented by this ele-
ment. If for every field position i the areaweight is denoted by w, , then the area mean

is computed as EZI wig_lzi WX,

. where X; isthe value of thefield at position i .

Many of the functions ending with the letter “r”, which means “for each record”, like

meanr, Which computes the mean of arecord, need area weights.

Whenever a function needs area weights and the input record is a GRIB or LOLA
record, or, in the case of functions with more than one input file, if one of the input
records is a GRIB or LOLA record, the grid information of this GRIB resp. LOLA
record is used to compute the area weights. But if the involved records only have
SIMPLE, EXTRA, or SERVICE format a warning is printed and all grid points are
weighted the same.

If thisis not desired or if the grid used in a GRIB record is not supported (“ari B ERROR
Wi ghts cannot be calculated - map type <n> not currently supported! "), or other Weights

than that suggested by the stored grid should be used, e.g. because the grid information

PAGE 27

in the GRIB record is wrong (the user can use function gri ddes (page 40) to print the
assigned grid description as explained in Section 3.6 “Grid description files” on
page 24), then the area weights must supplied separately by using special weight files.
Weight files are files of record length 1 corresponding to a particular grid. They contain

the areaweights of that grid asfield elements.

To use the weight files the user has to call another function which has the same name
but with an additional letter “w” at the end, e.g. reanrw, Which means “(using a weight

file)”. These functions have exactly one more input file, namely the weight file.

For some standard resolutions there are existing “ready to use” weight files. They can
be found in the directory gri ds, a subdirectory of the directory containing the executa-
ble program. Before continuing, it is best to set an environment variable like cri ps with

this directory name. Use the command

whi ch ext

to find the directory of the executable program.

In this directory, henceforth referred to as scr ps, are some useful files. All their names
begin with a grid name. The grid names are t21, t42, t106, r72x36, r72x37, r144x73,
r180x90, r 180x91, r 360x180, r 360x181, r 720x360, r 720x361, Where t <n> indicates a Gaussian
grid and r <mex<n> a regular grid with <m> longitudes and <n> latitudes. There are 2

files per grid; for example, for the T21 grid there are the files

t21.grid. asc
t21. wei ghts. | ol a

The file <grid>. grid.asc is a grid description file as explained in Section 3.6 “Grid
description files’ on page 24. The file <gri d>. vei ghts. 1 ol a IS the area weight file. The
weights are normalised to the sum of 1, but there are no functions that require this.
Weight files are used in the following way: Let us assume that the user wants to com-
pute the global means of T21 fields stored in thefileiti1 e, and wants to store the result

inofile. Theuser just hasto type

ext neanrw ifile $CGRIDS/t21. weights.lola ofile

Considering the fact that there is no grid information stored in SIMPLE, EXTRA or
SERVICE files, it can be seen that weighted means are still easy to calculate. (The

PAGE 28

function name neanrw (page 97) stands for “mean for each record (using a weight
file)").

How can the mean over a particular area (which is assumed to be a rectangular box) be
computed? There are two ways. The direct way uses the function sel i ndexbox (page 66)

Or sel | onl at box (page 67) to select the box:

ext meanrw -selindexbox ifile -selindexbox $GRIDS/t21. weights.lola ofile

where the coordinates of the box must be given twice and must be the same. (The
selected box of the weight file is not normalised to the sum of 1, but as already men-

tioned, this does not matter.)

To avoid (twice) typing the coordinates of the box every time the mean over thisareais
computed, it isalso possible to construct a special weight file for the desired area, using
the function naski ndexbox (page 55) or maski onl at box (page 55). This function does not
actualy remove the data points outside the desired box, but rather it sets all these

entries to the missing value. Such aweight file could hence be constructed by typing

| ol a maskl onl at box $GRI DS/t 21. wei ghts.lola t21. weights.nmy_area.lola

and, once generated, used with

ext neanrw ifile t21. weights.ny_area.lola ofile

If the user wishes to work with a longitude/latitude grid other than those with pre-pre-
pared weight files, the best method is first to construct a grid description file, and then
construct the weight file, or, much easier, if there is a GRIB file available containing a
description of thisgrid, use the function wei gnt 1 (page 50) to construct the weight file of
this grid.

To construct the weight file for a given grid description file, use the function wei ght 0

(page 49). e.q.

lola weight0 r72x36.weights.lola < r72x36.grid.asc
If weight files are to be constructed for only land or sea, the user first has to find a sea/

land mask. Thisis atask the user has to do for himself. Once he has such a mask, he

can easily construct the desired weight files using the functionsi fthen (page 89) and

PAGE 29

i fnot t hen (page 90). For example, if the sea/land mask is called r 72x36. sl mask. ext , he

can type:

lola ifthen r72x36. sl mask. ext r72x36.wei ghts.|ola r72x36.wei ghts.land.lol a
lola ifnotthen r72x36. sl nask. ext r72x36.wei ghts.lola r72x36. wei ghts.sea.lola
The new weight files can be normalised by using the function nor mal i ze (page 56) func-

tion, although thisis not necessary.

lola normalize -ifthen r72x36. sl mask. ext r72x36.wei ghts.lola \
r72x36. wei ghts.land. | ol a

lola normalize -ifnotthen r72x36. sl mask. ext r72x36. wei ghts.lola \
r72x36. wei ght s. sea.l ol a

If the user wishes to work with a grid which is not a longitude/latitude grid, he must

write hisown FORTRAN program to produce the weight file.

In some situations it is defensible to use constant weights to get a first impression.

Then function const (page 50) applied as- const, 1 can be used instead of the weight file:

ext neanrw ifile -const,1 ofile

3.8 Howtoconvert filesinto SIMPLE, EXTRA, SERVICE, LOLA, or
GRIB?

We consider two possibilities: In the first case the user has aready a SIMPLE,
EXTRA, SERVICE, LOLA, or GRIB file and wants to change it into another of one of
these five formats, and in the second case the user has an ascii file. In all other cases,

the file should first be converted to ascii format.

Asregards the first case: The user can use the function copy (page 48) for converting to
SIMPLE, EXTRA, SERVICE, or LOLA and the function copy2 (page 48) for convert-
ing to GRIB. These functions are copying the contents of the input file to the output file
and are changing the format due to the given program name. Remember: The name

how the program was called determines the output format.
First example: To change the GRIB filefile. grb to the EXTRA format, just type

ext copy file.grb file.ext

Second example: To upgrade the format of the SERVICE filefiie. srv to the LOLA for-
mat, assuming that the grid is T21, just type

PAGE 30

lola copy file.srv file.lola < $GRIDS/t21.1o0l a. asc

$GRIDS/t 21. 10l a. asc iISagrid description file which is explained in Section 3.6 “ Grid
description files” on page 24 and cri s is an environment variable which should be set

as described in that section.

Even though some information of the grid is known, namely the number of longitudes
and latitudes, the program asks for the complete description of the grid to facilitate the

use of agrid description files.

Third example: Let us assume that the EXTRA filefile. ext contains data belonging to
aGaussian T21 grid and that any_t 21_data_set. grb iSa GRIB file containing a T21 data
set. To change now the EXTRA filetiie. ext to GRIB format containing the T21 grid

description of any_t 21_dat a_set . gr b, the user has to type

grb2 copy2 file.ext any_t21 data_set.grb file.grb

(Thetrick isthat all GRIB records that are written by this program get the description

part of the last read in GRIB record which isin this case from any_t 21_dat a_set. grb.)

If the program would be called as gr b instead of gr b2, the accuracy of the GRIB record
of fire.grb would be the greatest accuracy of both input files. This is normally not
desired, S0 CALL grbo2 INSTEAD OF grb.

As regards the second case: Imagine that the user has been given an ascii format file
caledtile. asc, and wants to make an EXTRA file called fi1e. ext, or a SERVICE file
caled fite.srv, or a LOLA file called fite.101a out of it. Let us assume that the file
file. asc IS Of an arbitrary format, but with at least one blank, tab, or new line between
two numbers. (If thisis not the case the user could use the unix commandscut , past e, OF
vi toinsert blanks between the numbers.) Also important: The exponential ascii rep-
resentation must not contain apor d, it must alwaysbee or e, S0 change 1. oop- 04 to

1. 0oe- 04 for example.

To start with, the user must create an EXTRA (or SERVICE or LOLA) file by using the
function i nput (page 44). If the size of the field of each record is 2592, if the dates of
the records are to be numbered from 18530100 in monthly steps, if the timeis 0 and
must not be increased, if the codeis 167, and if thereisonly 1 level per date whichisO,
he could type:

PAGE 31

ext4 input, 2592, 18530100, 100, 0,0, 167,1,0 file.ext < file.asc

Or, if the user wants to create a SERVICE file called fi1e.srv with 72 longitudes, 36
latitudes, and the same header, he could type:

srv4 input, 72, 36, 18530100, 100, 0,0, 167,1,0 file.srv < file.asc

Or, if the user wants to create a LOLA file called ti1e. 10l a With the same header, he
could type

echo 18530100 100 0 0 167 1 0 72 36 | cat $GRID/'r72x36.grid.asc - file.asc |\
lolad input file.lola
where sari D/ r 72x36. gri d. asc 1S agrid description file, see Section 3.6 “Grid description

files’ on page 24 for details.

After doing this, the user can check the contents of file.ext (Or file.srv Of file.lol a)

with the function i nf o (page 38), or with 1 ongi nf o (page 39).

It may then be necessary to shift the field to the left or to the right, or swap left with
right or the top with the bottom to give consistency with other existing files. For this,
the user can use the function shiftieft (page56), shiftright (page56), swapl eftright

(page 56), Or swapt opbot t om (page 57).

Lastly, it may be necessary to set some numbers to the missing value. For example, the
missing value in the data could be -9999, and let us assume that the user uses the
default missing value, so that -9999 appears in the data as -9999 and not as a missing
value. To change a constant into the missing value, the user should call the function

setctoni ss (page 68).

The other way around, converting SIMPLE, EXTRA, SERVICE, LOLA, or GRIB files
to ascii, isjust to call one of the functions out put (page 46), out put snp (page 46), out pu-

text (page 46), outputsrv (page 47), or out put | ol a (page 47).

3.9 How to transfer filesto other computers?

Because GRIB is a standard, GRIB files can be transferred from one computer to

another without taking care about internal number representations.

PAGE 32

So it remains the question of how transfer EXTRA, SERVICE, or LOLA files between

computers with different internal number representations. Two ways are possible:

The first is to change the format of the files into GRIB, transfer the GRIB file, and
change the format back. (For details see Section 3.8 “How to convert files into SIM-
PLE, EXTRA, SERVICE, LOLA, or GRIB?" on page 30.) But in GRIB the numbers
are compressed, so that after changing the format back to EXTRA, SERVICE, or
LOLA they might have been changed alittle.

The second way is to convert the file to ascii format, and then compress it if the data
transfer is ow. After transfer, the file has to be uncompressed if necessary, and then
converted back into EXTRA, SERVICE, or LOLA format. (The size of the compressed

ascii fileis of the same magnitude as that of the original file).

Let, for example, the SIMPLE filei i1 e be given. The commands at the sender side are

smp outputsnp ifile > ifile.asc
conpress ifile.asc

The conpress command generates afile namediifii e. asc. z which can now be sent. The

receiving user hasto type

unconpress ifile.asc.Z
snp inputsmp ifile < ifile.asc

Ifiti1eisan EXTRA file, the sender should type

ext outputext ifile > ifile.asc
conpress ifile.asc

and the receiving user should type

unconpress ifile.asc.Z
ext inputext ifile <ifile.asc

IfifiieisaSERVICE file, the sender should type

srv outputsrv ifile > ifile.asc
conpress ifile.asc

and the receiving user should type

unconpress ifile.asc.Z
srv inputsrv ifile < ifile.asc

PAGE 33

IfitireisaLOLA file, the sender should type

lola outputlola ifile > ifile.asc
conpress ifile.asc

and the receiving user should type

unconpress ifile.asc.Z
lola inputlola ifile < ifile.asc

3.10 Computationsfor each level separately

Sometimes it is desirable that computations should be performed for each level sepa-

rately. For example, imagine that the monthly averages are to be computed for an input

file of temperature at 15 levels. The ssimple call

ext

monavg ifile ofile

does not work correctly, because the function monavg computes the average of al fields

for each month, with no regard to level. If, for one month, the 15 levels are stored con-

secutively, then the averages could be correctly calculated by typing:

ext
ext
ext
ext
ext
ext
ext
ext
ext
ext
ext
ext
ext
ext
ext
ext
ext

splitl5 ifile o001 002 003 004 005 006 007 008 009 010 011l 012 013 014 o015
monavg o001 nD1

monavg 002 o2 BAD EXAMPLE!

nmonavg 003 nD3

nmonavg 004 nD4

monavg 005 nD5

nmonavg 006 nD6

monavg o007 nD7

nmonavg 008 nD8

nmonavg 009 nD9

nmonavg 010 miO

nmonavg o011l mil

nmonavg 012 ml2

monavg 013 ml3

nonavg 014 ml4

nmonavg 015 ml5

nmergel5 n01 nD2 nD3 n04 n05 nD6 nD7 nD8 M09 nll0 nil ml2 ml3 ml4 ni5 ofile

rm o?? ni??

In the first stepifile was divided by spiitis (split<n> (page 60)) into 15 files. Every

record of i tile a thefirst level isnow stored in oo1, every record at the second level in

002, etc. The computation of the monthly averages is now done separately for each

level inthe next 15 steps. Afterwards, al the levels are merged together by the function

mer gel5 (rrer ge<n> (page 60)).

PAGE 34

A short-cut exists which summarizes all these steps. Just type

onl evel s ext nonavg ifile ofile PREFERRED SOL UT|ON|

Thejob oni evel s Needs a program name as its first argument, a function name as its sec-
ond argument, then an arbitrary number of input file names followed by one output file
name. Input files may consist of only onelevel. These files are treated asif they had the
samefield on all levels, thus, for example, the correlation between the single level pre-
cipitation stored inifiie1 and the multi level temperature fields stored inifi1e2 can be

calculated with the following call

onlevels ext cor ifilel ifile2 ofile

This job creates temporary files in the directory stveoi r. If not enough disk space is

available in this directory, change it to another one.

3.11 About everlasting zombies, parent killing children, and other
unimportant things

This chapter can be skipped, as knowledge of its contents is not necessary for use of

the program.

Irrespective of the program name, the output format of a child process is an internal
pipeformat. Itis GRIB like, if one of theinput filesis GRIB, otherwiseitisLOLA like
if the grid isknown, otherwiseit is SERVICE like, if the number of latitudes is known,
otherwise it EXTRA like. It is never PURE or SIMPLE. If a GRIB input field was

decompressed, then no compression is made for output.

If aprocess receives the cont-signal, it prints after awhile a status message. This can be
used for functions which need very long time for computation to see what they are just
doing. The function st at us (page 44) can be used to find out this signal number. Let for
example this signal number be 19. Then the unix command ki 11 -19 <process | D> Sends
this signal to the process which status is to be asked. It does not kill it! C-shell users
can also stop this process by pressing controL- z and starting it again by the shell com-

mand % This starting makes the C-shell sending the cont-signal to the process.

PAGE 35

If a child process is not needed any longer it will be killed. For example, if the user

wants to select only thefirst record of i fi | e after subtracting 273.15 from it, he types:

ext selfirstrec -subc ifile ofile

The computer writes

ext selfirstrec: Started child process: “ext(2) subc ifile (pipe 2.1)”
ext (2) subc: Enter constant!
ext (2) subc>

The user types 273. 15 and gets

K

ext selfirstrec: Processed 1 record.

After the function sel firstrec selected the first record, there was no need to evaluate
the function subc any longer, thus an interrupt signal was sent from the selfirstrec-

function to the subc-function. A 1ook at the protocol file confirms this:

(831) 96-01-10 13:08:53 started in /nf/k/k204099/ dat as:
ext selfirstrec -subc ifile ofile

(833) 96-01-10 13:08:53 started child of 831

ext(2) subc infile (pipe 2.1)

(833) 96-01-10 13:08:58 input values: 273.15

(833) 96-01-10 13:08:58 received signal 2 (Interrupt)

(831) 96-01-10 13:08:58 Processed 1 records.
A remark concerning parallel computations: If several processes need to print on stand-
ard output or standard error at the same time, this does not lead to a chaotic screen,
because there is synchronisation of all the processes involved. Only one process at a
time can print to one of both, the standard output and the standard error. If a process
needs standard input, it locks the screen from the moment it prints the request for input,
until after the input has been given. This behaviour ensures that the correct process

receives the input data.

If a process encounters an error or receives an error signa, it kills al its children by
sending the signal “Broken Pipe” and, if it is not the root process, it also kills the root
process, again by sending it the “Broken Pipe’ signal. Thereafter this process pauses if
it is not the root process. It does not close the pipes until this pause. If the root process
iskilled by asignal, it returns a nonzero exit code. This behaviour ensures that the user
getsanonzero exit code if one of the children or one of their descendants encounters an

error, and it prevents the occurrence of everlasting “zombies’. (If aprocesshasdied, its

PAGE 36

“soul” (whichisitsexit code) must be “rescued” by its parent process, but if this parent
is already dead, an everlasting “zombie” would arise. The user can recognise “zom-
bies’ by the status “z” in aprocess list created by the unix command “ps*, but it is not
possible to kill them, since they are already dead. A processwill kill all its children and

its grandparent to prevent itself becoming an everlasting zombie. What a cruel world!)

A last topic: In the directory of the executable program there is a directory called st at .
This directory contains one file named st ati stic. After every successful start the pro-
gram tries to write one line of statistical information into this file to enable the authors
to separate the functions into important and less important ones. The version number,
the date, a hash of the user name, the name how the program was started, and all
involved functions are written into thisfile which is readable to everyone. To avoid dis-
advantages in speed the statistic is written by a child process which is destroying itself
at the latest after 60 seconds.

PAGE 37

4. Thefunctions

This section gives a description of the function. For easier description al input files are

namedifile Orifilet,ifile2, eC. and al output filesare named ofile OF ofi I et, of i | €2,

etc. Further the following notion is introduced:

i (t) Record number t of i file.

i (t,x) Element number X of the field of record number t of i file.

ij (t,X) Element number X of thefield of record number t of i fil e<j>.

o(t) Record number t of of i I e.

0(t,xX) Element number X of thefield of record number t of of i I e.

0, (t,X) Element number X of thefield of record number t of of i I e<j >.
4.1 Information
shortinfo

i nfo

ifile
(“short information™) Prints short information of the recordsof i fi1e. That isthe

format, date, time, code, level, and size. If thefield is complex, thisisalso

printed. If thereisinformation in dispo #1 or dispo #2, thisis also printed.

For GRIB records the accuracy is not printed. Thisis due to the fact that this
function avoids reading the field for speed reasons, but without reading the field
it is not possible for the program to determine the accuracy of a GRIB record. To

print the accuracy of a GRIB record, use function f or mat i nf o (page 39) instead.

ifile

(“information”) Printsinformation of the recordsof i fi1e. That isthe date, code,
level, size, and the minimum, mean, and maximum value, and the number of

missing values. The mean value is computed without the use of area weights!

PAGE 38

| ongi nfo
ifile
(“long information™) Prints long informations of the records of ifiie. That isthe
complete header and the compl ete field.
formatinfo
ifile

(“Format information”) Identical to function shortinfo (page 38) with the differ-
encethat also thefield isread. Thusthisfunction isslowlier but can also print the

accuracy of GRIB records.

pi pei nfo
ifile ofile

(“Pipeinformation”) Prints the same than function i nf o (page 38) and copies
ifiletoofile. Thesenseisto get information of what is flowing through an pipe.

For example the command

ext nonmeans -daynins pi pel pipe2 &

in the example on page 24 could be replaced by

ext pipeinfo -nmonneans -daym ns pi pel pipe2 &
pi peshortinfo

ifile ofile

(“Pipe short information”) Prints the same than function shorti nf o (page 38) and
copiesifile tOofile. The senseisto get information of what is flowing through

an pipe. For example the command

ext nmonmeans -dayni ns pi pel pipe2 &

in the example on page 24 could be replaced by

ext pipeshortinfo -nmonneans -daymi ns pipel pipe2 &

PAGE 39

gribinfo
ifile
(“GRIB information”) Prints for GRIB records all information stored in the
description part. Can be used to see entries for the used grid, the centre ID, etc.
gri ddes
ifile

(“grid description™) The grid description of the first record is printed. See
Section 3.6 “ Grid description files” on page 24 for details. Typically the standard

output isredirected in afile, for example
ext griddes t21.grb > t21.grid.asc

gr ads
ifile ofile

(“grads’) Printsadescription file of i i1 e on standard output for the plotting soft-
ware grads. Typically the standard output isredirected in afile and the programis

called aspur e Or pur e8, depending on what is the natural size of afloat. Example:

pured4 grads file.grb file.grads > file. des
grads -1

After starting gr ads, the user can open the file by the command
open file.des
and can display for example code 167 by
di splay c167
nrec
ifile

(*number of records’) Prints the number of recordsof ifie.

PAGE 40

nyear
ifile
(“number of years’) Prints the number of different years. This functions assumes
that the records for the same year are immediately adjacent. See also function
showyear (page 42).

nmon
ifile
(“number of months™) Prints the number of different combinations of years and
months. This functions assumes that the records for the same year and month are
immediately adjacent. See also function shownon (page 42).

ndat e
ifile
(“number of dates’) Prints the number of different dates. This functions assumes
that the records for the same date are immediately adjacent. See also function
showdat e (page 42).

ntime
ifile

(“number of times”) Prints the number of different combinations of date and
time. This functions assumes that the records for the same date and time are

immediately adjacent. See also function show i me (page 43).

ncode

ifile

(“number of codes’) Prints per date the number of different codes. Thisfunctions
assumes that the records for the same date are immediately adjacent and that the

records for the same date and code are ordered in such away that all records of

PAGE 41

the same code are immediately adjacent. This function can well be used in con-

junction with function sel first dat e (page 63) as

ext ncode -selfirstdate ifile

See also function showcode (page 43).

nl evel
ifile
(“number of levels™) Prints per date and code the number of levels. This func-
tions assumes that the records for the same date and code are ordered in such a

way that all records of the same code areimmediately adjacent. Thisfunction can

well be used in conjunction with function sel fi r st code (page 65) as

ext nlevel -selfirstdate ifile

See also function show evel (page 43).

showyear
ifile
(“show year”) Prints all different years. This functions assumes that the records
for the same year are immediately adjacent.

shownon
ifile
(“show month”) Prints al different combinations of years and months. This func-
tions assumes that the records for the same year and month are immediately adja-
cent.

showdat e
ifile
(“show date”) Prints all different dates. This functions assumes that the records

for the same date are immediately adjacent.

PAGE 42

showt i ne
ifile
(“show time”) Printsall different combinations of dates and times. Thisfunctions

assumes that the records for the same date and time are immediately adjacent.

showcode
ifile
(“which codes’) Prints per date all different codes. This functions assumes that
the records for the same date are immediately adjacent and that the records for

the same date and code are ordered in such away that all records of the same

code are immediately adjacent. This function can well be used in conjunction

with function sel fi rst dat e (page 63) as
ext showcode -selfirstdate ifile
show evel
ifile
(“show level”) Prints per date and code all different levels. This functions
assumes that the records for the same date and code are ordered in such away

that all records of the same code are immediately adjacent. This function can

well be used in conjunction with function sel fi r st code (page 65) as
ext show evel -selfirstcode ifile
countc
ifile ofile
(“count constant™)

o(L,x) = #{i(t,x),x =x1i(tx) £missi (t',x') =¢

PAGE 43

countcr
ifile ofile
(“ count constant for each record”)

o(t,1) =#{i(t',x),t' =t i(t',x") #zmissUi (t',x") =¢

status

(“status”) Prints the signal number of the conr-signal. This can be used for other
functions which need very long time for computation to see what they are just
doing. Let for example this signal number be 19. Then the unix command ki1 -
19 <process | D> Sendsthissignal to the process which statusisto be asked. It does
not kill it! (C-shell users can also stop this process by pressing contraL- z and
starting it again by the shell command % This starting makes the C-shell sending

the cont-signal to the process).

4.2 Formatted input and output
i nput
ofile

(“input ascii”) This function reads ascii numbers from standard input and stores
them asfield elements of ofi | e. Read Section 3.8 “How to convert filesinto SIM-
PLE, EXTRA, SERVICE, LOLA, or GRIB?’ on page 30 for details of use. The
first input numbers concerning the headers should be given as advanced input as
described in Section 3.3 “Advanced standard input” on page 21. Theinput of the
fields should be redirected to afile.

I nput snp
ofile

(“input ascii SIMPLE likely”) This function reads ascii numbers from standard
input which are in an SIMPLE likely sequence and storestheminofiie. Read

PAGE 44

Section 3.9 “How to transfer files to other computers?’ on page 32 for details of

use. Normally the standard input is redirected to afile.

The numbers that are read are exactly that ones which are written out by

out put snp (page 46). For that reason i nput snp could be understood as the opposite

of out put snp.

I nput ext
ofile

(“input ascii EXTRA likely”) This function reads ascii numbers from standard
input which arein an EXTRA likely sequence and storesthem inofile. Read
Section 3.9 “How to transfer files to other computers?’ on page 32 for details of

use. Normally the standard input is redirected to afile.

The numbers that are read are exactly that ones which are written out by

outputext (page 46). For that reason i nput ext could be understood as the opposite

of out put ext .

I nput srv
ofile

(“input ascii SERVICE likely”) This function reads ascii numbers from standard
input which arein an SERVICE likely sequence and storesthem inofile. Read
Section 3.9 “How to transfer files to other computers?’ on page 32 for details of

use. Normally the standard input is redirected to afile.

The numbers that are read in are exactly that ones which are written out by

output srv (page 47). For that reason i nput srv could be understood as the opposite
of out put srv.

i nputl ol a
ofile

(“input ascii LOLA likely”) Thisfunction reads ascii numbers from standard
input which arein aLOLA likely sequence and storesthem inofile. Read

PAGE 45

Section 3.9 “How to transfer files to other computers?’ on page 32 for details of

use. Normally the standard input is redirected to afile.

The numbers that are read in are exactly that ones which are written out by
output | ol a (page 47). For that reason i nput 1 ol a could be understood as the oppo-
site of out putl ol a.

out put
ifile

(“output”) Prints all values to standard output.

out put i nt
ifile
(“output integer™) Prints al values rounded to the nearest integers to standard
output, each record in one line.

out put snp
ifile
(“output ascii SIMPLE likely”) This function writes all headers and fields of
ofile @ ascii numbers to standard output in an SIMPLE likely sequence. Read

Section 3.9 “How to transfer filesto other computers?’ on page 32 for details of

use. Normally the standard output is redirected to afile.

The numbers that are written out are exactly that ones which are read in by
i nput snp (page 44). For that reason i nput ext could be understood as the opposite

of out put ext .
out put ext
ifile

(“output ascii EXTRA likely”) Thisfunction writesall headersand fields of ofi 1 e
as ascii numbers to standard output in an EXTRA likely sequence. Read

PAGE 46

Section 3.9 “How to transfer files to other computers?’ on page 32 for details of

use. Normally the standard output is redirected to afile.

The numbers that are written out are exactly that ones which are read in by
i nput ext (page 45). For that reason i nput ext could be understood as the opposite

of out put ext .

out put srv
ifile
(“output ascii SERVICE likely”) This function writes al headers and fields of
ofile asascii numbersto standard output in an SERVICE likely sequence. Read

Section 3.9 “How to transfer files to other computers?’ on page 32 for details of

use. Normally the standard output is redirected to afile.

The numbers that are written out are exactly that ones which are read in by
i nput srv (page 45). For that reason i nput srv could be understood as the opposite

of out put srv.

out putl ol a
ifile
(“output ascii LOLA likely”) Thisfunction writes all headers and fields of ofile
as ascii numbersto standard output in aLOLA likely sequence. Read Section 3.9

“How to transfer filesto other computers?’ on page 32 for details of use. Nor-

mally the standard output is redirected to afile.

The numbers that are written out are exactly that ones which are read in by
i nput 1 ol a (page 45). For that reason i nput srv could be understood as the opposite

of out put srv.

PAGE 47

4.3 Converting the format

copy

copy

ifile ofile

(“copy”) Copieseachrecord of i file toofile. Thisfunction is normally used to
changetheformat of i fi1 e to EXTRA or SERVICE. For example: To change the
GRIB filefiie. grb to the EXTRA format, just type

ext copy file.grb file.ext

Remember: The name of the program, in thisexampleit is*ext”, determines the

output format. See also function copy2 (page 48).

2
ifilel ifile2 ofile

(“copy”) Copieseachrecord of i file1toofile. The headersand fieldsof ifile2
areignored. Thisfunction is normally used to change a SIMPLE, EXTRA,
SERVICE, or LOLA fileto GRIB format. In this case the description parts of the
GRIB records of i ti1e2 are used for the description parts of the records of ofi I e.
(Thetrick isthat all GRIB records that are written by this program get the
description part of the last read in GRIB record which are in this case from
ifile2.) For example: Let us assume that the EXTRA filefiie. ext contains data
belonging to a Gaussian T21 grid and that any_t 21_data_set. grb iISaGRIB file
containing a T21 data set. To change now the EXTRA filefile. ext to GRIB for-

mat containing the T21 grid description Of any_t21_data_set . grb, the user has to
type

grb2 copy2 file.ext any_t21 data set.grb file.grb

Remember: The name of the program, in the exampleitis“grb2”, determinesthe

output format. See also function copy (page 48).

If the program would be called as gr b instead of gr b2, the accuracy of the GRIB
record of fi1e.grb would be the greatest accuracy of both input files. Thisis nor-
mally not desired, so CALL grb2 INSTEAD OF grb.

PAGE 48

4.4 Generation of files

wei ght 0
ofile

(“weight”) An areaweight file is generated, see Section 3.7 “ The concept of area
weights’ on page 27 for more information. The requested input is exactly what is
written in agrid description file, see Section 3.6 “Grid description files” on

page 24. The area weights are the sizes of the areas which are bounded by lines

exactly between the neighboured grid points.

The rules for the most western points are: The western boundary line for the
areas lies between the these most western points and the most eastern points, but

the longitudinal distance to west is never greater than to the east.

For example: If the two western longitudes are 30°E and 40°E and the most east-
ern oneis 100°E, then the areas of grid points at longitude 40°E are bordered by
35°E in the West and 45°E in the East, and the areas of the grid points at longi-
tude 30°E are bordered by lines at 25°E in the East and 35°E in the West. If the
most eastern longitude would be 28°E instead of 100°E, then the areas at grid
points at longitude 30°E would be bordered by lines at 29°E in the West. A corre-
sponding rule holds for the most eastern points.

The rules for the most northern points are: The northern boundary line for the
areas has the same latitudinal distance to the north than to the south, but it is

never greater than 90°N. A corresponding rule holds for the most southern points.

For example: If the three most northern latitudes are at 85°N, 80°N, and at 75°N,
then the areas of the grid points at latitude 80°N are bordered by linesat 77.5°N
in the South and at 82.5°N in the North, and the areas of the grid points at | atitude
85°N are bordered by lines at 82.5°N in the South and 87.5°N in the North. If
there would be additional grid points at 90°N, then the corresponding areas are
bordered by lines at 87.5°N in the South and 90°N in the North.

PAGE 49

wei ght 1
ifile ofile

(“weight”) Writes the area weights of the first record of i fiie toofi 1 e. Thisfunc-
tion can be used to create aweight file, see Section 3.7 “The concept of area

weights’ on page 27 for more information.

nul |
ofile
(“null™) Writes one record into of i 1 e Which consists of afield of size 1 with 0 as
element. If for example in acommand the “filling up” of fileitiie (See
Section 2.4 “The “Filling up” of input filesand “enlarging” of input records’ on
page 16) should be done with anull field and not with acopy of the last record, it
could be typed
-cat2 ifile -null inthecommandlineinstead of ifile.

const
ofile
(“constant”) Write one record into of i 1 e Which consists of afield of size 1 with a
user given number as element. Such afile behavesin formulas like a constant,
imagine the example ext div -const, 100 ifile 100_div_by_ifile Where 100 is
divided by ifiie.

consts
ofile

(“constant series”) Writesin every record of ofile afield of size 1 with for every
record another user given number as element. In the exampleext add ifile
-consts ifile_plus_constants the user can give for every record another constant
which should be added to thefieldsof i fi1e.

PAGE 50

pi

f or

ofile

(* ") Write one record into of i 1 e Which consists of afield of size 1 with the
mathematical constant 11 as element. Such afile behavesin formulas like a con-

stant, imagine the exampleext sin -divc, 180 -mul -pi ifile ofile.

ofile

(“€”) Write one record into of i I e Which consists of afield of size 1 with the math-
ematical constant e as element. Such afile behavesin formulas like a constant,
imagine the exampleext mul ifile -e e_tines_ifile Whereifile ismultiplied by

e.

ofile

(“for number = ato b step ¢”) For generation of records with field size 1 and field
elements beginning with a start value in record 1 which isincreased from one

record to the next. For example the command

ext info -for,1,2,0.25

writes to standard output

REC : DATE COD LEVEL S| ZE M NI MUM MEAN MAXI MUM M SS
1: 0 0 0 1: 1.000e+00 1.000e+00 1.000e+00 : 0
2 0 0 0 1 1.250e+00 1.250e+00 1.250e+00 : 0
3 0 0 0 1 1.500e+00 1.500e+00 1.500e+00 : 0
4 0 0 0 1 1. 750e+00 1.750e+00 1.750e+00 : 0
5 0 0 0 1 2.000e+00 2.000e+00 2.000e+00 : 0

This function can be used for the creation of tables, try for fun

ext output -for,-5,5,0.1 > gauss_x. asc

ext output -div -exp -nmulc,-0.5 -sqr -gensteps, 101,-5,0.1 -sqrt -mulc,2 -pi \
> gauss_y. asc

past e gauss_x.asC gauss_y.asC > gauss. asc

Xvgr gauss. asc

PAGE 51

random
ofile

(“random”) Generates afile of rectangularly distributed random numbersin the
interval [0,1). (Theinternal start value of the random generator depends on the
system time and the process identity number.)

r andommor nal
ofile

(“random normally distributed”) Generates afile of normally distributed random
numbers. (The internal start value of the random generator depends on the sys-

tem time and the process identity number.)

4.5 Manipulating the header

chdat e
ifile ofile

(“change date”) Changes the date. A start date and a date step must be given in
the YYYYMMDD format. The dates of the recordsof i i1 e ischanged into a
new date, which is at the beginning the start date and which isincreased by adate

step whenever arecord has the same time, code, and level as the first record.

chtine
ifile ofile

(“changetime”) Changes the date and time. A start date and date step and a start
time and time step must be given. The dates must be giveninthe YYYYMMDD
format, the timesin the HHMM format. The dates and times of the records of
ifile are changed into anew date and time, which is at the beginning the start
date and start time and which isincreased by a date step and time step whenever

arecord has the same code and level as the first record.

PAGE 52

chyear
ifile ofile
(“change year”) Changes the year in every record of i fi e to the same given
value.
chnon
ifile ofile
(“change month™) Changes the month in every record of i 1i 1 e to the same given
value.
chday
ifile ofile

(“change day”) Changesthe day in every record of i fi1 e to the same given value.

chcode
ifile ofile
(“change code”) Changes the code in every record of i fi 1 e to the same given
value.

chcodes
ifile ofile
(“change codes’) Changes some user given codes of i fi 1 e to new user given val-
ues. First the user has to give the number of different codes to be changed. After-
wards he hasto typein pairs of old and new codes.

chl evel
ifile ofile

(“change level”) Changesthe level in every record of i fi1e. The user givesalist

of levelswhich is used cyclically to change the levels of the records. Thislistis

PAGE 53

chdi

chdi

read from the beginning every time when a new code or anew dateis read from

ifile. If thisisnot desired, the dates can be set to 0 by using chdat e, 0, 0 (chdat e
(page 52)).

spol
ifile ofile

(“changedispo #1”) Changes the dispo #1 entry in every record of i fi 1 e. Because
only SERVICE and LOLA format have a dispo #1 entry, thisfunction is only
useful if the output format is SERVICE or LOLA. Thisvalue can be used to store
acentre ID or what ever the user wants. The functions ongi nf o (page 39) and

shortinfo (page 38) shows the dispo entriesif they are different to zero.

sSpo2
ifile ofile

(“change dispo #2”) Changesthe dispo #2 entry in every record of i i | e. Because
only SERVICE and LOLA format have a dispo #2 entry, this function is only
useful if the output format is SERVICE or LOLA. Thisvalue can be used to store
an experiment number or what ever the user wants. The functions ongi nf o

(page 39) and shorti nf o (page 38) shows the dispo entriesif they are different to

Z€ero.

4.6 Manipulating thefield

chsi

e
ifile ofile

(“change size”) Changes the size of the field. If the new size is smaller than the
original one, then thefield is cut. If the new size is greater than the original one,

then thefield isfilled up with missing values. See also function enl ar ge (page 58).

PAGE 54

maski ndexbox
ifile ofile

(“mask index box”) Masks a box of the rectangularly understood fields, i.e. the
elementsinside the box are untouched, the elements outside are set to the missing
value. The field size of the records of of i1 e iStherefore the same than that of
ifile. The user hasto give the indexes of the edges of the box. The index of the

left edge may be greater than that of the right edge. See al'so function sel i ndexbox
(page 66).

The next figure demonstrate the numbering: To mask the bold marked box, the

user hasto typein 10 for index asthe left and 2 for the index as the right column
and 2 asthe index of lower and 4 as the index of the upper row. (The numbers at
the top are the indexes of the columns, that on the left handed side are that of the

rows.)

maskl onl at box
ifile ofile

(“mask longitude/latitude box”) Masks a box of the rectangularly understood
fields, i.e. the elementsinside the box are untouched, the elements outside are set
to the missing value. The user has to give the longitudes and latitudes of the
edges of the box. The field size of the records of ofi | e iStherefore the same than

that of ifi1e. See also function sel I onl at box (page 67).

PAGE 55

normal i ze
ifile ofile

(“normalize”)

ot =
x’,i(t,%#miss ’

shiftleft
ifile ofile

(“shift left”) The rectangularly understood fields are cyclically shifted to the | eft.

shiftright
ifile ofile
(“shift right”) The rectangularly understood fields are cyclically shifted to the
right.

swapl eftri ght
ifile ofile
(“swap left with right™) The rectangularly understood fields are left right
swapped, t.i. thefirst column is swapped with the last one, the second is swapped
with the second last, etc.

swapri ghtleft
ifile ofile

(“sap right with left”) The same aS swapl ef tri ght (page 56).

PAGE 56

swapt opbott om
ifile ofile

(“swap top with bottom™) The rectangularly understood fields are top bottom
swapped, t.i. the first row is swapped with the last one, the second is swapped
with the second last, etc.

swapbot t ont op
ifile ofile

(“swap bottom with top”) The same as swapt opbot t om (page 57).

br eak
ifile ofile

(“break”) Breaks every record of i fi 1 e in auser given number of pieces of equal
field sizewhich are stored adjacent inof i 1 e. This could be useful for two reasons:
If otherwise computations could not be done for storage reasons or afield should

be divided into different levels. break isthe opposite of el t (page 57).

br eak<n>
ifile ofilel ... ofil e<n>

(“break”) Breaks every record of i fi1 e in <n> pieces of equal field size which are
storedinofilei ... ofi 1 e<n>. Thiscould be useful for two reasons: If otherwise
computations could not be done for storage reasons or afield should be divided

into different levels. br eak<n> IS the opposite of el t <n> (page 58).

mel t
ifile ofile

(“melt”) Meltsthe fields of every sequence of auser given length together to one
record, t.i. if the length of the sequenceisL, thefield of thefirst record of ofit e is
melted of thefieldsof record 1to L of ifiie, the second record of ofi I e is melted

of thefields of record L+1to 2L of ifile, €fC. nel t iSthe opposite of br eak.

PAGE 57

mel tal |
ifile ofile

(“melt al”) Meltsthe fields of all recordsof i fi1 e together to one field which is

stored inofile.
mel t <n>
ifilel ... ifile<n> ofile

(“melt”) Thefield of record R of ofi 1 e is melted by the fields of record R of
ifilel..ifile<n>. nelt<n>iStheopposite of break<n>. If the records have different
sizes, use the function chsi ze (page 54).

enl ar ge
ifile ofile

(“enlarge”) Enlarge thefield of i fi1e by auser given factor. If thefield sizeis n

and thisfactor is K thenitis

o(t,x) = o(t,x+n) = o(t,x+2n) = ... = o(t,x+Kn) =i(t, Xx)

t hi nout
ifile ofile

(“thinout”) Thinsout i fiie by missing out auser given number of records while

copyingitile toofile. If only every s-th record should be taken, theniit is

o(t,x) =i(1+ (t-=1)sx)

t hi noutr
ifile ofile

(“thin out for each record”) Thins out the rectangularly understood fields of
ifile. A user givesthe number of longitudes and latitudes to be skipped while

copyingifile toofile. If the number of longitudesof itileisn , and the

PAGE 58

number of latitudesis n,,, and if only every s, -th longitude and only every

S,,; ~th latitude should be taken, then the number of longitudes of ofi e is
Mon = [1+ (Mgn=1) /Sy]

that of latitudesis

Mg = [T+ (Mg —1) /S5

anditis

o(t, (Xlon’ Xlat)) =it (14 (Xlon_l) Sion 1+ (Xlat_l) Slat))

4.7 Manipulating the sequence of records
rever se
ifile ofile

(“reverse”’) Reverses the sequence of therecordsinifiie. If N isthe number of

recordsof ifile, thenitis

o(t,x) = i(N-t+1,x)

reverser
ifile ofile

(“reverse for each record”) Reverses the sequence of field elementsinitiie. If

N (t) isthe number of field elements of record number t of ifiie, thenitis

o(t,x) = i(t,N(t) —=x+1)

transpose
ifile ofile

(“transpose’) i til e is understood as a matrix with each record asarow. This

matrix is transposed:

PAGE 59

o(t,x) = i(x1)

transposer

spli

ifile ofile

(“transpose for each record”) Each record of i fi 1 e isunderstood as a matrix.
These matrixes are transposed: If n . (t) isthe number of longitudes and

N, () isthe number of latitudes of record t, theniitis

O(t' iIon-"nlon (t) (ilat_l)) = O(t’ ilat+ nlat(t) (ilon_l))

t <n>
ifile ofilel ... ofil e<n>

(“split”) Splitsifi1e into the <n> output files record by record. Thefirst record of
ifile becomesthefirst record of ofi 1 e1, the second record of i fi 1 e becomes the
first record of ofi I e2, ..., and the <n>th record of i fi | e becomesthefirst record of
ofile<n>. The (<n>+1)st record of i fi | e becomes the second record of of i1 e1, the
(<n>+2)nd record of i i1 e becomes the second record of ofile2, ..., and the
(2<n>)th record of i fi 1 e becomes the second record of of i | e<n>, the (2<n>+1)st
record of i fi1 e becomes the third record of of i1 e1 €tC. spi i t <n> iS the opposite of

mer ge<n>.

mer ge<n>

ifilel ... ifile<n> ofile

(“merge”’) Merges the <n> input files into ofile record by record. The first record
of ofi 1 e wasthefirst record of i ti1e1, the second record of of i | e was the first
recordof i file2, ..., and the <n>th record of of i 1 e wasthefirst record of i fi1 e<n>.
The (<n>+1)st record of ofi | e Was the second record of i fi 1 e1, the (<n>+2)nd
record of ofi 1 e was the second record of i file2, ..., and the (2<n>)th record of
ofi I e Was the second record of i fi 1 e<n>, the (2<n>+1)st record of of i1 e wasthe
third record of i i1 e1 €tC. ner ge<n> iSthe opposite of spi i t <n>. If the records have

different sizes, use the function chsi ze (page 54).

PAGE 60

nmer gedat e2
ifilel ifile2 ofile

(“merge sorted by dates’) Mergestherecordsof ifiie1 andifiie2 sorted by date,
t.i.every record of i fi1e1 and every record of ifile2 isin ofile, and al recordsin
ofile are sorted by date. THIS FUNCTION ASSUMES THAT THE RECORDS
ARE SORTED BY DATE!

repl ace
ifilel ifile2 ofile

(“replace”’) This function can be used to replace some records of i fi 1 e1 by
recordsof i file2. Therecordsof ifile1 are copied toofil e aslong as the header
of the record does not mach the header of thefirst record of i fi 1 e2. If they match,
thefirst record of ifile2 iscopied toofile and therecord of i fiie1 is skipped.
Afterwards again the records of i fi 1 e1 are copied as long as the header of the
record does not mach the header of the second record of i i1 e2. Afterwards the
same proceeding is done with the third record of i fi 1 e2, etc. If there are no

recordsleftinifiie2 then al the remaining recordsof i fi1e1 are copiedtoofile.
cat <n>

ifilel ... ifile<n>

(“concaternate”) Concaternates the contents of the files, ssimilar to the unix com-
mand cat . The sense of using this function instead of the unix command cat isto
let it write the protocol file (See Section 3.1 “Protocol file’ on page 18) and to

start it asachild process.

PAGE 61

4.8 Selection

sel

ifile ofile

(“select™) For selection of records. Thisfunction is good for stepping through

ifi1e and deciding manually for each record if it should be copied to of i 1 e Or not.

Some information is displayed about thefirst record. The user has now to decide,
weather this and the following records should be copied to of i I e Or skipped. The
user hasto typein two numbers. Thefirst gives a selection and the second isO for
selection should not be copied to of i 1 e Or @ number not equal to O, for example 1,
if it should be copied to of i 1 e. The first number, which defines the selection,
could positive, zero, or negative. A positive number <n> isarelative selection, t.i.
the current record and the following <n>-1 records are selected. A zero selects all
records from the current one to the last one. A negative number - <n> is an abso-
lute selection. It selects all records from the current one to the record number <n>.
The selection is then copied or skipped, depending on the second given number,
and if not theend of i fi 1 e isreached, again information about the current record
isdisplayed and again the user have to select, weather this and the following
records should be copied to of i 1 e Or Skipped.

selrec

ifile ofile

(“select record”) Selects al records of i i1 e with the record number in agiven
range and copiesthem toofile. If O isgiven asthe last record number, then all

records from the start record to the end of i fi 1 e are copied.

selfirstrec

ifile ofile

(“select first record”) Selectsthefirst record of i fi1e and copiesittoofile.

PAGE 62

selfirstm dl astrec
ifile ofilel ofile2 ofile3

(“select first middle last record”) Thefirst record of i fi1e iscopied toofile1, the
last record of ifiieiscopiedtoofiles, and al other recordsof ifiie, t.i. from
then second record to the second last record, are copied to of i 1 e2. Thisfunctionis

thought to be used in connection with function seasmeans and seasavgs.
sel dat e
ifile ofile
(“select date”) Selectsal records of i fi 1 e with the date in a given range and cop-
iesthemtoofile.
selfirstdate
ifile ofile

(“select first date”) Selects all recordsof i fi1e until arecord isfound with
another date than the first record. This function can well be used in conjunction

with function ncode (page 41) or function showcode (page 43) as
ext ncode -selfirstdate ifile
respectively as
ext showcode -selfirstdate ifile
selfirsttine
ifile ofile

(“select first time”) Selectsall records of i fi 1 e until arecord isfound with
another combination of date and time than thefirst record. This function can well

be used in conjunction with function ncode (page 41) or function showcode

(page 43) as

ext ncode -selfirsttime ifile

respectively as

PAGE 63

ext showcode -selfirsttime ifile
sel year
ifile ofile
(“select year”) Selects all recordsof i ti 1 e with the year in agiven range and cop-
iesthemtoofile.
sel non
ifile ofile
(“select month™) Selectsall records of i i1 e with the month in a given range and
copiesthem to ofi I e.
sel seas
ifile ofile
(“select season™) Selects all recordsof i ti1e with agiven season and copies them
tOofile.
sel day
ifile ofile
(“select day”) Selects all records of i fi1e with the day in agiven range and cop-
iesthemtoofile.
sel code
ifile ofile

(“select code”) Selects all records of i i1 e with auser given code and copies
them toofi 1 e. For selection of different codes simultaneously, see function

sel code<n> (page 65).

PAGE 64

sel firstcode
ifile ofile

(“select first date”) Selects all recordsof i fi1e until arecord isfound with
another code or another date then the first record. This function can well be used

in conjunction with function ni evel (page 42) or function show evel (page 43) as
ext nlevel -selfirstcode ifile
respectively as
ext show evel -selfirstcode ifile
sel code<n>
ifile ofilel ... ofile<n>

(“select code”) For each output file the user must give a code. For every output
file this function then selects all records of i fi 1 e with this code and copies them

into this output file.

sel | evel
ifile ofile
(“select level™) Selects all records of i ti 1 e with the level in agiven range and
copiesthem to ofi I e.
sel di spol
ifile ofile

(“select dispo #1”) Selects all records of i fi1 e with auser given dispo #1 entry
and copiesthem to ofi 1 e. Because only SERVICE and LOLA format have a
dispo #1 entry, this function is only useful if the input format is SERVICE or
LOLA. Thefunctionsi ongi nf o (page 39) and shorti nf o (page 38) shows the dispo

entries if they are different to zero.

PAGE 65

sel di spo2

sel i

ifile ofile

(“select dispo #1”) Selects all records of i fi1 e with auser given dispo #2 entry
and copiesthem to of i 1 e. Because only SERVICE and LOLA format have a
dispo #2 entry, this function is only useful if the input format is SERVICE or
LOLA. Thefunctionsi ongi nf o (page 39) and shorti nf o (page 38) shows the dispo

entriesif they are different to zero.

ndexbox
ifile ofile

(“select index box™) Selects a box of the rectangularly understood fields. The
field size of the records of of i1 e istherefore generally smaller than that of i fi1e.
The user has to give the indexes of the edges of the box. (Smallest index is 1.)
The index of the left edge may be greater than that of the right edge.

The next figure demonstrate the numbering: To select the bold marked box, the
user hasto typein 10 for index asthe left and 2 for the index as the right column
and 2 as the index of lower and 4 asthe index of the upper row. Inifiie thefield
elements are numbered as indicated by the thin numbers, inofi 1 e asindicated by
the thick numbers. (The numbers at the top are the indexes of the columns, that
on the left handed side are that of the rows.)

, | 4|5 1| 2|3
s | 9|10 6|7 | 8
4 |14 |15 11 |12 |13
5

69 | 70 | 71 | 72

PAGE 66

(If ofi 1 e should be in GRIB format, better use function naski ndexbox (page 55),
which preserves the grib information, which is necessary for computing the area
weights. The GRIB formatted output file of maski ndexbox isonly slightly greater

than that of sel i ndexbox.)
sel | onl at box
ifile ofile

(“select longitude/latitude box™) Selects a box of the rectangularly understood
fields. The field size of the records of ofi I e iStherefore generally smaller than
that of i fi1e. The user hasto give the longitudes and latitudes of the edges of the

box. It isagood ideato choose LOLA as the output format.

(If ofi1e should be in GRIB format, better use function naski onl at box (page 55),
which preserves the grib information, which is necessary for computing the area
weights. The GRIB formatted output file of maski onl at box iS0nly slightly greater
than that of sel 1 onl at box.)

sel fil e<npof <n>
ifilel ... ifile<n> ofile
(“select file”) ifile<m iscopiedtoofile. See Section 3.4 “Not required output
files’ on page 22 for the sense of it.

sel fil e<l >and<npof <n>
ifilel ... ifile<n> ofilel ofile2

(“selectfile”)itile<i>iscopiedtoofiler andifile<m iScopied tOofile2. See

Section 3.4 “Not required output files” on page 22 for the sense of it.

PAGE 67

sel fi |l e<k>and<| >and<nrof <n>
ifilel ... ifile<n> ofilel ofile2 ofile3

(“selectfile”)ifile<k>iscopiedtoofiler andifile<i >iscopiedtoofile2 and
ifile<ms IS cCOpiedtoofiles. See Section 3.4 “Not required output files’” on
page 22 for the sense of it.

4.9 Missing values

setctomn ss
ifile ofile

(“set constant to missing value”)

Hi(tx) ifi(tx) #c

o) = miss if i (t,x) =c

|

setm ss
ifilel ifile2 ofile

(“set missing value”)

o(t,x) = Eiz(t’x) if i, (t,x) = miss
setm ssc

ifile ofile

(“set missing value by constant”)

O ¢ ifig(t,x) =miss
o(t,x) = U
O, (t,X) if iy (tX) #miss

PAGE 68

set not m ss
ifilel ifile2 ofile

(“set not missing value”)

i, (t, x) if i, (t,X) #miss
o(tx) = g2 ThltoFm

O miss if i (t,x) = miss
set not m ssc

ifile ofile

(“set not missing value by constant™)

0 ¢ if iy(tx) #miss
o(t,x =4 .
U miss if i, (t,x) = miss
count m ss
ifile ofile

(“count missing values”)

o(L,x) =#{i(thx),x =xi(tx) =misg

count m ssr
ifile ofile
(“count missing values for each record”)

o(t,1) = #{i(t',x),t'=ti(tx) = mis3

count not m ss
ifile ofile

(“count not missing values”)

PAGE 69

0(1,x) = #{i(t',x),x =x1i(t',x") #miss

count not m ssr
ifile ofile
(“count not missing values for each record”)

o(t,1) = #{i(t',x),t' =ti(tx) #miss

packr
ifilel ifile2 ofile

(“pack for each record”) Every field of of i1 e isbuilt only of that elements of
iti1e1 where the corresponding element in thefield of i ti1e2 isnot the missing
value. It ispossibleto think of i fi 1 e2 asamask. If for examplethefieldsof i fiie1
are only defined on land points with missing values at seaand only at sea, i fil el
could be packed by typing ext packr ifile ifile ofile. |f thefieldinifile has
also missing values at land, then another file should be used as the second argu-
ment, for example the land weight file, which has missing values at and only at

sea points.
unpackr

ifilel ifile2 ofile

(“unpack for each record”) Thefield of i file2 is scanned. Whenever anot miss-
ing valueisfound, an element of ifi1e1 isstored inthefield of ofite. The ele-
ments of thefields of i fi 1 e1 are read one after another. Maybe not all of them are
used. It ispossibleto think of i fi1e2 asamask. If packed_i fil e was built by the

command

ext packr ifile ifile packed_ifile

then of i I e, constructed by the command

ext size ifile | ext unpackr -chsize -packed_ifile ifile ofile

isequal toifile.

PAGE 70

4.10 Sorting and ranking

sort
ifile ofile

(“sort”) Sorts for every field position the elements in ascending order. Missing

values are put to the end. After sorting it is

0 (t;,x) <o(t, Xx) O(t, <t)), X

sortr
ifile ofile

(sort for each record) Sorts the elements of each record in ascending order. Miss-

ing values are put to the end. After sorting itis

o(t, x;) <o(t,x,) Ot, (X, <X,)

r ank
ifile ofile

(“rank™) o(t,x) istherank of i (t,x) in {i(t',x"),x" = .Equal elements
gets the same rank. For example: Theranksof (4.4,5.1,5.6,2.3,5.1,7.8) are
(2,35,5,1,35,6) , because 2.3 is the greatest number, 4.4 the 2nd greatest,
5.1 the 3rd and 4th greatest number, etc.

r ankr
ifile ofile

(“rank for each record”) o (t, x) istherank of i (t,x) in {i(t,x'),t' =1 .
Equal elements gets the same rank. For example: The ranks of
(4.4,5.1,5.6,2.3,5.1,7.8) are (2,3.5,5,1,3.5,6) , because 2.3 isthe greatest
number, 4.4 the 2nd greatest, 5.1 the 3rd and 4th greatest number, etc.

PAGE 71

411 Arithmetic
sum
ifile ofile

(“sum’)

o(1,x) = Zi(t,x)

t

sunkn>
ifilel ... ifile<n> ofile
(meﬂ)
n
o(t,x) = Zij(t,x)
j=1
sunr

ifile ofile

(“sum for each record”)

o(t,1) = Zi (t, x)

X

add
ifilel ifile2 ofile
(“add”). Identical with sune (sumxn> (page 72)).
o(t,x) =i, (t,x) +i,(t,X)

addc

ifile ofile

(“add constant”)

PAGE 72

o(t,x) =i(t,x) +c

addcc
ifile ofile
(“add complex constant”)

o(t,x) =i(t,x) +c

sub
ifilel ifile2 ofile

(“subtract”).

0(t,%) =iy (t,X)—i,(t %)

subc
ifile ofile
(“subtract constant™)

o(t,x) =i(t,x) —c

subf ront
ifile ofile
(“subtract from constant™)

o(t,x) = c—i(t,x)

subcc
ifile ofile
(“subtract complex constant”)

o(t,x) =i(t,x) —c

PAGE 73

subfrontc
ifile ofile
(“subtract from complex constant”)

o(t,x) =i(t,x) —c

m nus
ifile ofile
(“minus’)

o(t,x) = —i(t,x)

mul
ifilel ifile2 ofile
(“multiply™)

mul ¢
ifile ofile
(“multiply by constant™)
o(t,x) =i(t,x) [

mul cc

ifile ofile
(“multiply by complex constant™)

o(t,x) =i(t,x) [k

PAGE 74

div
ifilel ifile2 ofile
(“divide”)

i, (t,%)
i, (%)

o(t,x) =

di vc
ifile ofile

(“divide by constant”)

ot = | (t,Cx)

di vcc
ifile ofile

(“divide by complex constant”)

o(t;x) = HX

i nverse
ifile ofile
(“inverse”)

1
i (1, X)

o(t,x) =

nmod
ifilel ifile2 ofile

(“modulus’)

PAGE 75

i, (t,x) |. i (t,x) Zmiss[
Ll(t, X)le(t’)i i, (t,x) #missOi, (t,x) 20

t’ =
°(tX) iy (t,x) =missO

miss if . : .
i, (t,X) =missi, (t,x) #0

o

i, (t,X) hasnot to be an integer number.
nodc
ifile ofile

(“modulus constant™)

o(tx) = rl(i’X)Jc if i (t,x) #missOc#miss] c#0

OOoOOod

miss if i(t,x) =missldc=01c=0
¢ has not to be an integer number.

power
ifilel ifile2 ofile
(“power’)

oty = 0 (1)t (1) >000, (X 20
O miss ifi (%) <0D0i,(tx) <0

4.12 Maximum and Minimum
max

ifile ofile

(“maximum”)

o(L,x) = max{i(tx),x =x

PAGE 76

max<n>
ifilel... ifile<n> ofile

(“maximum”)

o(t,x) = max{i, (t,x),...,i (1, x)}

maxr
ifile ofile
(“maximum for each record”)

o(t,1) = max{i(t,x),t' =t

maxabsdi ffr
ifilel ifile2 ofile

(“maximum of absolute differences for each record”)
o(t,1) = max{|i1(t’,x') —i2(t',x')|,t' =t

This function can be used for comparison of the recordsof ifite1 andifiie2.
year maxs
ifile ofile

(“yearly maximum series”) For every adjacent sequence ty, ..., t, of records of

the sameyear itis

o(t,x) = max{i(t,x),t;<t'<t}

PAGE 77

nonmaxs
ifile ofile
(“ monthly maximum series”) For every adjacent sequencet,, ..., t_ of records of

the same year and month it is

o(t,x) = max{i(t,x),t;<t'<t}

daynmaxs
ifile ofile
(“daily maximum series’) For every adjacent sequence t,, ..., t of records of

the same year, month, and day itis

o(t,x) = max{i(t,x),t;<t'<t}

ifile ofile
(“minimum”)

o(L,x) = min{i(t,x),x =%

m n<n>
ifilel... ifile<n> ofile
(“minimum”)

o(t,x) = min{i, (t,x),...,i (t,X)}

PAGE 78

m nr
ifile ofile
(“minimum for each record”)

o(t,1) = min{i(t,x),t'=¢

year m ns
ifile ofile
(“yearly minimum series’) For every adjacent sequence t,, ..., t_ of records of

the sameyear itis

o(t,x) = min{i(t,x),t,<t'<t}

nonm ns
ifile ofile
(“monthly minimum series”) For every adjacent sequence t,, ..., t of records of

the same year and month it is

o(t,x) = min{i(t,x),t,<t'<t}

daym ns
ifile ofile
(“daily minimum series’) For every adjacent sequence t,, ..., t of recordsof the

same year, month, and day itis

o(t,x) = min{i(t,x),t,<t'<t}

PAGE 79

4.13 Mathematical functions
sign

ifile ofile

(“S‘gn”)
O 1 if i(t,x)>0
[PR -
o(tx) = O 0 if i(t,x) =0
O -1 if i(t,x) <0
O
miss if i (t,X) = miss
exp

ifile ofile
(ep’)

o(t,x) = e tx

ifile ofile

(“log”)

o(t,x) = log (i (t, X))
| 0g10

ifile ofile

(“log base 10")

o(t,x) = log,, (i (t,x))

PAGE 80

sin
ifile ofile
(“sin")

o(t,x) = sin(i(tx))

cos
ifile ofile
(“cos’)

o(t,x) = cos(i(t,x))

t an
ifile ofile
(H tar]”)

o(t,x) = tan (i (t,x))

asin
ifile ofile
(“asin’)

o(t,x) = asin(i(t,x))

acos
ifile ofile
(“acos’)

o(t,x) = acos(i(t,x))

PAGE 81

at an
ifile ofile
(“atar)

o(t,x) = atan(i(t,x))

at an2
ifilel ifile2 ofile
(“atan2”)

o(t,x) = atan2 (i (t,x),i,(t,x))
with atan2 (0,0) = 0 or atan2(0,0) = *T7t

conj
ifile ofile
(“complex conjugate”)

o(t,x) = i*(t,X)

re
ifile ofile
(“real part”)

o(t,x) = Re(i(t,x))

ifile ofile
(“imaginary part™)

o(t,x) = Im(i (t,X))

PAGE 82

arg
ifile ofile
(“argument”) Computes the argument or phase of the complex numbers.

o(t,x) = arg(i(t,x))

r et oconpl ex
ifile ofile
(“real to complex™)

o(t,x) =i(t,x)

i m oconpl ex
ifile ofile
(“imaginary to complex™)

o(t,x) = i0(tX)

recttoconpl ex
ifilel ifile2 ofile

(“rectangular to complex™)

o(t,x) =i(t,x) +il,(tx)

conpl ext or ect
ifile ofilel ofile2

(“complex to rectangular”)

0, (1, x) Re (i (t,x))

Im (i (t, X))

0, (t, x)

PAGE 83

pol t oconpl ex
ifilel ifile2 ofile

(“polar to complex™)

o(t,x) =i, (tx)e T2t

conpl ext opol
ifile ofilel ofile2

(“complex to polar”)

i (t,X)]
arg (i (t,x))

0, (1, x)

0, (t, x)

4.14 Comparisonsand Logic

A value not equal to zero istreated as “true”, zero istreated as “false’.

eq
ifilel ifile2 ofile
(‘equal”)
01 i (6,15 (tx) #missOig (tX) =i,(t %)
o(t,x) = E 0 if i (t,x),i,(t,x) ZmissOi, (t,x) #i,(t,x)
0 miss if i, (t,x) = missOi, (t,x) = miss
eqc

ifile ofile

(“equal constant™)

PAGE 84

neq

nec

E 1 if i (t,x),czmissdi, (t,x) =c¢
o(t,x) = E 0 if i (t,x),c#£missOi, (t,x) #c
l

miss if i, (t,x) = missJc = miss

ifilel ifile2 ofile
(“not equal™)
1 if iy (4, X),0,(t,x) ZmissOi, (t,x) i, (t,X)

0
0

o(tx) = 0 0 ifiy(tx),i,(t%) #missDiy (tx) =1, (t)
0

miss if i, (t,X) = missOi, (t,x) = miss

ifile ofile
(“not equal constant”)
1 ifi (t,x),c#missOi, (t,x) #C

]
]

o(t,x) = E 0 ifi (tx),czmissOi,(t,x) =c
U]

miss if i, (t,x) = missJc = miss

ifilel ifile2 ofile
(“lower equal”)
1 if iy (t,x),0,(t,x) #missOi, (t,x) <i,(t, %)

[l
O

o(t,x) = E 0 if iy (t,x),i,(t,x) ZmissOi, (t,x) >i,(t, x)
U

miss if i, (t,X) = missOi, (t,x) = miss

PAGE 85

| ec
ifile ofile
(“lower equal constant”)
1 ifig(t,x),c#gmissi, (t,x) <c

]
]

o(t,x) = E 0 ifi (t,x),czmissOi, (t,x) >c
U]

miss if i, (t,x) = missc = miss

| t
ifilel ifile2 ofile
(“lower than”)
E 1 if i (X)), i, (tx) 2missOiy (t,x) <i,(t, X)
o(tx) = 0 0 if iy (t,x),i,(tx) #missDiy (t,%) 2i,(t,X)
U miss if I, (t,x) = missOi, (t,x) = miss
ltc
ifile ofile
(“lower than constant”)
E 1 if i (t,x),c#£missOi, (t,x) <c
o(t,x) = E 0 ifi (t,x),czmissOi, (t,x) 2c
Umissif i,(t,x) =missdc = miss
ge

ifilel ifile2 ofile

(“greater equal™)

PAGE 86

001 iy (4%),15(6 %) #missOiy (6X) 21, (t,X)
o(t,x) = E 0 if i (t,x),i,(t,x) ZmissOi, (t,x) <i,(t,x)
U

miss if i, (t,X) = missUi, (t,X) = miss

gec
ifile ofile
(“equal constant™)
E 1 ifig(t,x),czmissOi, (t,x) =2c
o(t,x) = E 0 if i, (t,x),czmissOi (t,x) <c
Omissif i,(t,x) =missdc = miss
gt
ifilel ifile2 ofile
(“greater than”)
001 i (6,15 (4 %) #missOiy (6%) >i,(t %)
o(t,x) = E 0 ifiy (t,x),i,(t,x) #missOi, (t,x) <i,(t,x)
0 miss if i, (t,x) =missOi, (t,x) = miss
gtc

ifile ofile
(“ greater than constant™)
1 ifi (t,x),c#missOi, (t,x) >c

0
0

o(t,x) = E 0 ifi (t,x),czmissOi, (t,x) <c
H

miss if i, (t,x) = miss0c = miss

PAGE 87

and

ifilel ifile2 ofile

(‘and)
0 if i, (t,x) =00i,(t,x) =0
1 if Eil(t,x)JtODil(t,x);tmiss
o(t,x) = 0 O, (t,x) #00i, (t,x) # miss

.o i (t,x) 20010, (1, X) = miss
miss if U _ _ _
0 Dll(t,x)=m|$D|2(t,x)¢O

0 o

The following table, which must be read as described in Section 2.3 “Missing

values’ on page 14, describes the use of the missing value:

and 0 b,bz0 miss
0 0 0 0

a,az0 0 1 miss

miss 0 miss miss

(Theresult is undefined if the missing valueis set to 0.)

or

ifilel ifile2 ofile

(“or)
0 if i, (t,x) =00i,(t,x) =0
1 i Eil(t,x)ioml(t,x)imiss
N Diz(t,x)iomiz(t,x)imiss
o(t,x) =

Dy (tX) =00, (%) = miss
missif 0 Oiy(tx) =missOi, (%) =0
O

I

Oiy (t,x) = missDiz(t,x) = miss

PAGE 88

The following table, which must be read as described in Section 2.3 “Missing

values’ on page 14, describes the use of the missing value:

or 0 b,bz0 miss

0 0 1 miss
a,a20 1 1 1
miss miss 1 miss

(Theresult is undefined if the missing valueis set to 0.)

not
ifile ofile
(“not™)
0 ifi(t,x) 200i (t,x) #miss

U
O

o(t,x) = E 1 if i(t,x) =0
O miss if I (t,X) = miss

(The result is undefined if the missing valueis set to 0.)

4.15 Conditions

A value not equal to zero is treated as “true’, zero is treated as “false’. Typically the
condition, which isin al functions of this section thefirst input file, is substituted by an
internal pipe. For example, a command to store the differences of the two filesitile1

andifile2 inofile, but only where the differences are significant, could look like
ext ifthen -diffltest ifilel ifile2 -sub -ifilel -ifile2 ofile
i fthen

ifilel ifile2 ofile

(“ifititerthenifiie2")

o(t,x) = EiZ(t’X) if i, (t,x) ZmissOi,(t,x) Z0
y [l m|$ |f il(t’x) = mlSSD|1(t,X) =0

PAGE 89

i fthenc
ifile ofile

(“ifiti1e then constant”)

O ¢ if i,(t,x) ZmissOi, (t,x) #0
o(t,x) = O 1 (6%) _ _1()

Umissif iy (t,x) =missOi (t,x) =0
i fnotthen

ifilel ifile2 ofile

(“if notifilerthenitile2”)

Ui, (t, x) if i, (t,x) ZmissOi, (t,x) =0
o) = D2 Iy (tx) #missOiy (69
O miss if iy (t,x) =missOi (t,x) #0
i fnotthenc
ifile ofile
(“if notiti1e then constant”)

c ifi (t,x) #missi, (t,x) =0

0
o(t,x) = U _ _
Umiss if iy (t,x) =missOi, (t,x) #0

i fthenel se
ifilel ifile2 ifile3 ofile
(“ififiterthenitilez elseitiles”)
Eiz(t,x) if i, (t,x) ZmissOi (t,x) 20

o(t,x) = Ei3(t,x) if i, (t,x) ZmissOi (t,x) =0

0 miss if i, (t,x) = miss

PAGE 90

i fthenel sec
ifilel ifile2 ofile
(“ifitirerthenifiie2 else constant”)
i, (t,x) if iy (t,x) ZmissOi, (t,x) #0

[
[

o(t,x) = E c ifi (t,x) #missOi, (t,x) =0
l

miss if i; (t,X) = miss

i fthencel se
ifilel ifile2 ofile
(“ifiti1e1 then constant elseifile2”)
c if i (t,x) #missOi, (t,x) #0

U
[

o(t,x) = Eiz(t,x) if iy (t,x) #missOi, (t,x) =0
N

miss if i; (t,X) = miss

i ft hencel sec
ifilel ofile
(“if ifi1e then constant #1 else constant #2”)
c, if i (t,x) #missOi, (t,x) #0

0
0

o(t,x) = E c, ifi (t,x) Zmissdi,(t,x) =0
0

miss if i; (t,X) = miss

4.16 Geometry
dot pr od
ifilel ifile2 ofile

(“dotproduct”)

PAGE 91

0(1,x) = Zil(t,x)iz(t,x)
T

dot pr odr
ifilel ifile2 ofile

(“dotproduct for each record”)
-1
=] |:| . .
o(t1) = By wit)T w(tiy (61,(6)

where {w(t',x"),t' =t arethe areaweights obtained by the input records as

described in the first paragraph of Section 3.7 “ The concept of areaweights’ on
page 27.

dot prodrw
ifilel ifile2 ifile3 ofile

(“dotproduct for each record (using aweight file)”)

-1
o(t,1) =0 iy (x)0 XD (01 (L)
@,is(x,%i miss 3 0 X:is(X,%imi$ 3 1 2

ifile3 can be understood as aweight file, see Section 3.7 “ The concept of area
weights’ on page 27.

norm
ifile ofile

(“norm™)

0(1,x) = /Zi(x,t)2

PAGE 92

nor nr
ifile ofile

(“norm for each record”)

o(t1) = Hyw(, x’)E'VZw(t, X)i (x 1) 2

where {w(t',x"),t" =t arethe areaweights obtained by the input records as

described in the first paragraph of Section 3.7 “The concept of areaweights’ on
page 27.

nor nr w
ifilel ifile2 ofile

(“norm for each record (using aweight file)”)

o(t1) = O Z iz(x,t)D"V Z (D, (6 1)2
EL(,iz(x,t Z miss O X, i, (X 1) # miss

ifile2 can be understood as aweight file, see Section 3.7 “The concept of area

weights’ on page 27.

di st
ifilel ifile2 ofile

(“distance”)

o(Lx) = A/Z(iz(t,x)—il(t,x))z
t

distr
ifilel ifile2 ofile

(“distance for each record”)

o(t,1) = Ezw(t, XI)E—lA/ZW(t’ X) (i, (t, %) =iy (t,%))?2

PAGE 93

where {w(t',x"),t' =t arethe areaweights obtained by the input records as

described in the first paragraph of Section 3.7 “ The concept of areaweights’ on
page 27.

di strw
ifilel ifile2 ifile3 ofile

(“distance for each record (using aweight file)”)

o(t,1) = O Z i3(x,t)D_1A/ Z i (6, %) (i, (4 X) =iy (1, %)) 2
EL(,is(x,t # miss O X i3 (X) # miss

ifile3 can be understood as aweight file, see Section 3.7 “ The concept of area
weights’ on page 27.

r s
ifilel ifile2 ofile

(“root mean sgquare”) Identical to function di st (page 93).

rmsr
ifilel ifile2 ofile

(“root mean sgquare for each record”) Identical to function di str (page 93).

rmsrw
ifilel ifile2 ifile3 ofile
(“root mean square for each record (using aweight file)”) Identical to function
di strw (page 94).

nor ndot pr od
ifilel ifile2 ofile

(“normalized dotproduct”) The normalized dotproduct is the arcus cosine of the

angle betweenifiter andifile2. With

PAGE 94

S(x) = {t,i, (t,x) ZmissOi, (t, X) #miss
itis
Z(i (6,x) i, (1, %)

X)

t
o2y T 3

o(l,x) =

nor ndot pr odr
ifilel ifile2 ofile
(“normalized dotproduct for each record”) The normalized dotproduct is the

arcus cosine of the angle betweenititer andifiie2. With

S(t) = {xiy(t,x) ZmissOi, (t, x) # misg
itis

w(t,x) i, (t,X) i, (t, X)
o(t,1) = xgo()

J W (t, X) i (t,X) 2 W (t, %) i, (1, X) 2
x 03(t) x'S(t)

where {w(t',x"),t' =t arethe areaweights obtained by the input records as

described in the first paragraph of Section 3.7 “ The concept of areaweights’ on
page 27.

nor ndot pr odr w
ifilel ifile2 ifile3 ofile
(“normalized dotproduct for each record (using aweight file)”) The normalized

dotproduct is the arcus cosine of the angle betweenitiie1 andifile2. With

S(t) = {x i, (t,x) #missOi, (t,x) #misd] i5(t, X) # misg

PAGE 95

itis
DZ i3 (4,30, ()15 (t%)
X (t)

iy (t,X)i, (t,%)2 iy (t,X)i, (t,x)2
Jxmzmug(91602 5 i3, (1

ifile3 can be understood as aweight file, see Section 3.7 “ The concept of area

o(t,1) =

weights’ on page 27.

4.17 Means and averages

In this program there isthe different notion of “mean” and “average” to distinguish two
different kinds of treatment of missing values. While computing the mean, only the not
missing values are considered to belong to the sample with the side effect of a probably
reduced sample size. Computing the average is just adding the sample members and
divide the result by the sample size. For example, the mean of 1, 2, miss, and 3 is
(1+2+3)/3=2, whereas the average is (1+2+misst+3)/4=miss/4=miss. If there are no

missing values in the sample, the average and the mean are identical.

In this chapter the abbreviations as in the following table are used:

mean resp. avg Sl x

mean resp. avg

weighted by or ot
- H2 WH =1
{Wi,l—l,...,n}]:1
mean

ifile ofile
(Hm%r]”)

0(1,x) = mean{i(t',x),x =%

PAGE 96

avg
ifile ofile
(“average”)

o(1,x) =avg{i(t,x),x =%

mean<n>
ifilel ... ifile<n> ofile

(‘mean’)

o(t,x) = mean{i, (t,x),...,i (t,x)}

avg<n>
ifilel ... ifile<n> ofile
(“average”)

o(t,x) = avg{i,(t,x),....,i (t,x)}

nmeanr
ifile ofile
(“mean for each record”)
o(t,1) = mean{i (t',x'),t' =t
weighted by area weights obtained by the input record as described in the first
paragraph of Section 3.7 “The concept of area weights’ on page 27.

meanr w
ifilel ifile2 ofile

(“mean for each record (using aweight file)”)

PAGE 97

o(t,1) = mean{i, (t',x),t' =1

weighted by {i, (t',x'),t' =t .
If iti1e1 isaGRIB file and constant area weights should be used instead of the
areaweights which correspond to the grid described in the GRIB record, use
-const, 1 instead of i fi 1 e2. (For an explanation see function const (page 50) and
Section 3.2 “Combining different functions’” on page 19 and Section 3.3
“ Advanced standard input” on page 21.)

avgr
ifile ofile
(“average for each record”)
o(t,1) = avg{i(t',x),t' =t
weighted by area weights obtained by the input record as described in the first
paragraph of Section 3.7 “The concept of areaweights’ on page 27.

avgrw
ifilel ifile2 ofile

(“average for each record (using aweight file)”)

o(t,1) =avg{i, (t',x),t' =1

weighted by {i,(t',x),t' =4 .

Missing values in the weight file do not lead automatically to a missing value
average. Only those points are averaged, where the weight is not the missing

value.

Ifiti1e1isaGRIB file and constant area weights should be used instead of the
area weights which correspond to the grid described in the GRIB record, use

-const, 1 instead of i ti1e2. (For an explanation see function const (page 50) and

PAGE 98

Section 3.2 “Combining different functions’” on page 19 and Section 3.3
“ Advanced standard input” on page 21.)
anom
ifile ofile
(“anomaly”)
o(t,x) =i(t,x) —mean{i (t',x"),x =x
This function has to keep the fields of al records concurrently in the memory. If
not enough memory is available, the user should use the functions nean (page 96)
and sub (page 73).
anonr
ifile ofile
(“anomaly for each record”)

o(t,x) =i(t,x) —mean{i(t',x"),x =%

where the mean is weighted by area weights obtained by the input record as

described in the first paragraph of Section 3.7 “ The concept of areaweights’ on
page 27.

anont w
ifile ofile
(“anomaly for each record (using aweight file)”)
o(t,x) =i(t,x) —mean{i(t',x),t' =t

where the mean isweighted by {i, (t',x'),t' =1 .

PAGE 99

zonmean
ifile ofile

(“zonal mean”) For every latitude the mean over all longitudes is computed.

zonavg
ifile ofile

(“zonal average’) For every latitude the average over all longitudes is computed.

mer mean
ifile ofile

(“meridial mean™) For every longitude the mean over all latitudes is computed.

nmer avg
ifile ofile
(“meridial average’) For every longitude the average over al latitudesis com-
puted.
runneans
ifile ofile
(“running mean series’)

o(t,x) = mean{i(t,x),i(t+1,%x),...,i(t+c—-1,x)}

runavgs
ifile ofile
(“running average series’)

o(t,x) = avg{i(tX),i(t+1,%),...,i (t+c—1,x)}

PAGE 100

dayneans
ifile ofile
(“daily mean series’) For every adjacent sequence t,, ..., t,, of records of the

same year, month, and day itis

o(t,x) = mean{i(t',x),t;<t'<t}

dayavgs
ifile ofile
(“daily average series”) For every adjacent sequence ty, ..., t of records of the

same year, month, and day it is

o(t,x) = avg{i(thx),t,<t'st}

5dayneans
ifile ofile

(“5-day-interval mean series’) The days of a month are thought as grouped to 5-
day-intervals. These intervals are day 01 to day 05, day 06 to day 10, day 11 to
day 15, etc. For every adjacent sequence t,, ..., t of records of the same year,

month, and 5-day-interval itis

o(t,x) = mean{i(t',x),t,<t'<t}

5dayavgs
ifile ofile

(“5-day-interval average series’) The days of a month are thought as grouped to
5-day-intervals. These intervals are day 01 to day 05, day 06 to day 10, day 11 to
day 15, etc. For every adjacent sequence t,, ..., t_ of records of the same year,

month, and 5-day-interval itis

PAGE 101

o(t,x) = avg{i(thx),t,<t'<t}

10dayneans
ifile ofile

(“10-day mean series’) The days of a month are thought as grouped to 10-day-
intervals. Theseintervals are day 01 to day 10, day 11 to day 20, and day 21 to
day 30, etc. For every adjacent sequence t,, ..., t of records of the same year,

month, and 10-day-interval it is

o(t,x) = mean{i(t',x),t;<t'<t}

10dayavgs
ifile ofile

(“10-day average series’) The days of a month are thought as grouped to 10-day-
intervals. These intervals are day 01 to day 10, day 11 to day 20, and day 21 to
day 30, etc. For every adjacent sequence t,, ..., t_ of records of the same year,

month, and 10-day-interval it is

o(t,x) = avg{i(thx),t,<t'<t}

nonnean
ifile ofile
(“monthly mean™)

0 (01, x) mean {i (t, X), month (i (t)) = 01}

0 (12, x) mean {i (t, X), month (i (t)) = 12

ofi I e cOnsists always of exactly 12 records.

PAGE 102

monavg
ifile ofile

(“monthly average”)

0(01,x) = avg{i(t,x), month(i(t)) =01}

0(12,x) = avg{i (t, x) , month (i (t)) =12

ofi 1 e consists always of exactly 12 records.

nonmeans
ifile ofile
(“monthly mean series’) For every adjacent sequence t,, ..., t_ of records of the

same year and month it is

o(t,x) = mean{i(t',x),t;<t'<t}

nonavgs
ifile ofile
(“monthly average series’) For every adjacent sequence t,, ..., t, of records of

the same year and month it is

o(t,x) = avg{i(t',x),t,<t'<t}

seasmean
ifile ofile
(“seasonal mean”)

0 (01, x)

mean {i (t, X), season (i (t)) = 13}

0(04,x) = mean{i (t,”x.) , season (i (t)) = 16

PAGE 103

ofi I e consists always of exactly 4 records.

seasavg
ifile ofile
(“seasonal average”)

0 (01, x)

avg{i (t,x),season (i (1)) =13}

0(04,x) = avg{i(t,x),season(i(t)) = 16

ofi I e consists always of exactly 4 records.

seasneans
ifile ofile

(“seasonal mean series’) For every adjacent sequence t,, ..., t of records of the
same year and season, where december belongs to the northern hemispheric win-

ter of the next year, itis

o(t,x) = mean{i(t',x),t;<t'<t}

Be careful about the first and the last record, they may be incorrect DJF means.
Seefunction sel firstnidi astrec (page 63) for selecting the second to the last sec-

ond record.
See aso functionsrseasneans (page 104), cseasneans (page 105), r cseasneans
(page 106).
r seasmeans
ifile ofile
(“robust seasonal mean series’) For every adjacent sequence t,, ..., t,, of records

of the same season, it is

o(t,x) = mean{i(t',x),t;<t'<t}

PAGE 104

This function isrobust in the sense that it ignores the year. If for example month
12 of year 255 isfollowed by month 1 of year O, then both month are considered

as belonging to the same season.

Be careful about the first and the last record, they may be incorrect DJF means.
Seefunction sel firstnidi astrec (page 63) for selecting the second to the last sec-

ond record.

See also functions seasneans (page 104), cseasneans (page 105), r cseasneans
(page 106).

cseasneans
ifile ofile

(“controlled seasonal mean series”) For every adjacent sequence t, ..., t,, of
records of the same year and season, where december belongs to the northern

hemispheric winter of the next year, itis

o(t,x) = mean{i(t',x),t;<t'<t}

Thisfunction is controlled in the sense, that only those seasonal means are writ-
ten out, which have the same number of records for every month of the season. If
for example the first three records of ai i1 e are monthly means of January, Feb-
ruary, and March, then the mean of January and February is not written out,

because there is no record for December.
See also functions seasneans (page 104), r seasnmeans (page 104), crseasneans
(page 105).
cr seasneans
ifile ofile

(“controlled robust seasonal mean series’) For every adjacent sequencet,, ..., t,

of records of the same year and season, where december belongs to the northern

hemispheric winter of the next year, it is

PAGE 105

o(t,x) = mean{i(t',x),t,<t'<t}

Thisfunction is controlled in the sense, that only those seasonal means are writ-
ten out, which have the same number of records for every month of the season. If
for example the first three records of ai i1 e are monthly means of January, Feb-
ruary, and March, then the mean of January and February is not written out,

because there is no record for December.

Thisfunction isrobust in the sense that it ignores the year. If for example month
12 of year 255 isfollowed by month 1 of year 0, then both month are considered

as belonging to the same season.
See also function seasneans (page 104), r seasneans (page 104), cseasmeans
(page 105).
rcseasmeans
ifile ofile
(“robust controlled seasonal mean series’) This function isidentical to function
crseasneans (page 105).
seasavgs
ifile ofile

(“seasonal average series’) For every adjacent sequence t,, ..., t_ of records of
the same year and season, where december belongs to the northern hemispheric

winter of the next year, itis

o(t,x) = avg{i(t',x),t;<t'<t}

Be careful about the first and the last record, they may be incorrect DJF averages.
Seefunction sel firstnidi astrec (page 63) for selecting the second to the last sec-

ond record.

PAGE 106

See also functions rseasavgs (page 107), cseasavgs (page 107), crseasavgs
(page 108).

rseasavgs
ifile ofile

(“robust seasonal mean series’) For every adjacent sequence t,, ..., t,, of records

of the same season, it is

o(t,x) = avg{i(tx),t,<t'<t}

Thisfunction isrobust in the sense that it ignores the year. If for example month
12 of year 255 isfollowed by month 1 of year O, then both month are considered

as belonging to the same season.

Be careful about the first and the last record, they may be incorrect DJF averages.
Seefunction sel firstnidi astrec (page 63) for selecting the second to the last sec-

ond record.
See also functions seasavgs (page 106), cseasavgs (page 107), crseasavgs
(page 108).
cseasavgs
ifile ofile

(“controlled seasonal mean series”) For every adjacent sequence t, ..., t,, of

records of the same year and season, where december belongs to the northern

hemispheric winter of the next year, itis

o(t,x) = avg{i(thx),t,<t'st}

Thisfunction is controlled in the sense, that only those seasonal averages are
written out, which have the same number of records for every month of the sea-

son. If for example the first three records of ai i1 e are monthly means of Janu-

PAGE 107

ary, February, and March, then the average of January and February is not written

out, because there is no record for December.
See also functions seasavgs (page 106), rseasavgs (page 107), crseasavgs
(page 108)).
crseasavgs
ifile ofile

(“controlled robust seasonal mean series’) For every adjacent sequence t,, ..., t,

of records of the same year and season, where december belongs to the northern

hemispheric winter of the next year, it is

o(t,x) = avg{i(thx),t,<t'<t}

Thisfunction is controlled in the sense, that only those seasonal averages are
written out, which have the same number of records for every month of the sea-
son. If for example the first three records of ai fi1 e are monthly means of Janu-
ary, February, and March, then the average of January and February is not written

out, because thereis no record for December.

Thisfunction isrobust in the sense that it ignores the year. If for example month
12 of year 255 isfollowed by month 1 of year O, then both month are considered

as belonging to the same season.

See also function seasavgs (page 106), rseasavgs (page 107), cseasavgs (page 107).

rcseasavgs
ifile ofile

(“robust controlled seasonal mean series’) This function isidentical to function

crseasavgs (page 108).

PAGE 108

year mean
ifile ofile

(“yearly mean™) ldentical to function nean (page 96).

year avg
ifile ofile

(“yearly average”) Identical to function avg (page 97).

year means
ifile ofile
(“yearly mean series’) For every adjacent sequence t,, ..., t,, of records of the

sameyear, itis

o(t,x) = mean{i(t',x),t;<t'<t}

year avgs
ifile ofile
(“yearly average series’) For every adjacent sequence t, ..., t, of records of the

sameyedr, itis

o(t,x) = avg{i(thx),t, <t'st}

4.18 Variances, correlations, and co.

In this chapter the abbreviations as in the following table are used:

Var, n—lzi”: L (% =%)2
Var, (n=172%1 (5-%)?2
Covar,, n—lzin: L (X =%) (y;-9)

PAGE 109

Covar, (=15, 05=%) (%-9)
0 n 2
Var, weighted by . % | wjxjH
Z“ w,x - =2 [
{w,i=1..n % =1t % O
W, 1l w, U
i i
=1 - =1 -
" o " @@
Var, weighted by i;Wj n E _;WJXJH
{w,i=1..,n0 |OQgnh @@ = Zl=lwigxi_ n E
Dz wl — Z W O w; O
O JD] 0 J 0
1=1 j=1 j=1
] n ad n 0
Covar, weighted by . E Z WJ-XJHE Z waJE
. Z“ AR —LDE}/ —=1 A
{w,i=1..n n r=1gt o gg! O
Z W, O w. 00O w. O
£ o & '00 £ 10
=1 =1 =
" O n 00 n O
Covar, weighted by Z w, E z w, XJHE z WJyJE
i=1 n =1 =1
W, [IX. — Oy, — =—=—0
{w,i=1..n g" @@ =n z'zl ‘o' " DE,y' no 0
DZW-D—ZW O w. 00O w. O
o0&, 0 4 0 & '0o0 & 'O
il n L0l n Il
O w. x.L10 w.y.L
. 0 'Zl J JDD Zl JyJD
ZI -1 Wi EXI_ n E%’yi_ n L
Cor weighted by J i;Wj =5 I_1WJ a
{Wi,i:1,...,n} 0 n DZ 0 n DZ
0 _lejxjg B _leijH
Zi:lwigxi_ — E |—1wlgyl_ _n E
1l w; [[w; [
o &0 O £ 10
j=1 j=1

Only those values resp. pairs of values belong to the sample which are not the missing
value resp. which are both not the missing value.
var 0

ifile ofile

(“variance [divisor was n-0]")

PAGE 110

0(L,x) = Va{i(t,x),x =%

varl
ifile ofile
(“variance [divisor was n-1]")

0(1,x) = Var {i(t,x),x =%

var Or
ifile ofile
(“variance [divisor was n-0] for each record”)

o(t,1) = Var {i(t,x),t' =4

weighted by area weights obtained by the input record as described in the first
paragraph of Section 3.7 “ The concept of areaweights’ on page 27.

var Orw
ifilel ifile2 ofile

(“variance [divisor was n-0] for each record (using aweight file)”)

0(t,1) = Varg{i (t',x),t' =8

weighted by {i,(t',x'),t' = .

Ifitite1isaLOLA or GRIB file and constant area weights should be used
instead of the area weights which correspond to the grid described in the LOLA
or GRIB record, use -const, 1 instead of i fi 1 e2. (For an explanation see function
const (page 50) and Section 3.2 “Combining different functions’ on page 19 and
Section 3.3 “Advanced standard input” on page 21.)

PAGE 111

var 1r

ifile ofile
(“variance [divisor was n-1] for each record”)

o(t, 1) = Vary{i(t,x),t =18

weighted by area weights obtained by the input record as described in the first
paragraph of Section 3.7 “The concept of areaweights’ on page 27.

var lrw

pool

ifilel ifile2 ofile

(“variance [divisor was n-1] for each record (using aweight file)”)

o(t,1) = Var {i,(t'\x),t'=4

weighted by {i, (t',x"),t' =t .

Ififi1ter isaLOLA or GRIB file and constant area weights should be used
instead of the area weights which correspond to the grid described in the LOLA
or GRIB record, use - const, 1 instead of i fi 1 e2. (For an explanation see function
const (page 50) and Section 3.2 “Combining different functions’ on page 19 and
Section 3.3 “Advanced standard input” on page 21.)

edvar <n>

ifilel ... ifile<n> ofile

(“pooled variance’) The values of the input fileifi1e<j > are assumed to be dis-
tributed as N (ay, A, 02) with user given A; and unknown 02. Thisfunction
computes the pooled variance o2. For every field element x only those records t

belong to the sample SJ (X) , which have ij (t,xX) Zmiss. Itis

1) . 1 . 2
0(L,x) = |——— § A7l G (t,x) - i (t',x)0
5 #5 () _nj; B I O T
]
=1

PAGE 112

st ddevO
ifile ofile

(“standard deviation [divisor was n-0]")

o(l,x) = JVarg{i(t,x),x =%

st ddevl
ifile ofile

(“standard deviation [divisor was n-1]")

o(L,x) = JVar {i(tx),x =%

st ddevOr
ifile ofile

(“standard deviation [divisor was n-0] for each record”)

o(t,1) = JVary{i(t,x),t' =¢

weighted by area weights obtained by the input record as described in the first
paragraph of Section 3.7 “The concept of areaweights’ on page 27.

st ddevOrw
ifilel ifile2 ofile

(“standard deviation [divisor was n-0] for each record (using aweight file)”)

o(t, 1) = /\/Varo{il(t’,x'),t’:t}

weighted by {i,(t',x'),t' = .

Ifitite1isaLOLA or GRIB file and constant area weights should be used
instead of the area weights which correspond to the grid described in the LOLA

or GRIB record, use - const, 1 instead of i fi 1 e2. (For an explanation see function

PAGE 113

const (page 50) and Section 3.2 “Combining different functions’ on page 19 and
Section 3.3 “ Advanced standard input” on page 21.)

stddevlr
ifile ofile

(“standard deviation [divisor was n-1] for each record”)

o(t,1) = Jvar {i(t,x),t'=¢

weighted by area weights obtained by the input record as described in the first

paragraph of Section 3.7 “The concept of areaweights’ on page 27.
stddevlrw

ifilel ifile2 ofile

(“standard deviation [divisor was n-1] for each record (using aweight file)”)

o(t,1) = JVal{il(t’,x'),t’zt}

weighted by {i, (t',x),t' =8 .

Ifitiler isaLOLA or GRIB file and constant area weights should be used
instead of the area weights which correspond to the grid described in the LOLA
or GRIB record, use -const, 1 instead of i fi 1 e2. (For an explanation see function
const (page 50) and Section 3.2 “Combining different functions’ on page 19 and
Section 3.3 “Advanced standard input” on page 21.)

2st ddevO
ifile ofile

(“2 times standard deviation [divisor was n-0]")

o(L,x) =2 Varg{i(t',x),x =%

PAGE 114

2st ddevl
ifile ofile

(“2 times standard deviation [divisor was n-1]")

o(1,x) =2 Var {i(t,x),x =%

2st ddevOr
ifile ofile

(“2 times standard deviation [divisor was n-0] for each record”)

o(t,1) =2 Vary{i(t,x),t'=8

weighted by area weights obtained by the input record as described in the first
paragraph of Section 3.7 “The concept of areaweights’ on page 27.

2st ddevOrw
ifilel ifile2 ofile

(“ 2 times standard deviation [divisor was n-0] for each record (using aweight
file)”)

o(t,1) = ZJVao{il(t’,x'),t’ =

weighted by {i, (t',x"),t' =t .

Ifiti1er isaLOLA or GRIB file and constant area weights should be used
instead of the area weights which correspond to the grid described in the LOLA
or GRIB record, use - const, 1 instead of i fi 1 e2. (For an explanation see function
const (page 50) and Section 3.2 “Combining different functions’ on page 19 and
Section 3.3 “Advanced standard input” on page 21.)

PAGE 115

2st ddevlr
ifile ofile

(“2 times standard deviation [divisor was n-1] for each record”)

o(t,1) = ZJle{il(t’,x'),t’ =t

weighted by area weights obtained by the input record as described in the first
paragraph of Section 3.7 “ The concept of areaweights’ on page 27.

2st ddevlrw
ifilel ifile2 ofile

(“2 times standard deviation [divisor was n-1] for each record (using aweight
file)")

o(t,1) = ZJle{il(t’,x'),t’ =t

weighted by {i, (t',x),t' =14 .

Ifitite1isaLOLA or GRIB file and constant area weights should be used
instead of the area weights which correspond to the grid described in the LOLA
or GRIB record, use -const, 1 instead of i fi 1 e2. (For an explanation see function
const (page 50) and Section 3.2 “Combining different functions’ on page 19 and
Section 3.3 “ Advanced standard input” on page 21.)

covar O

ifilel ifile2 ofile

(“covariance [divisor was n-0]")

0(1,x) = Covary{ (i, (t',x),i,(t',x)),x =%

PAGE 116

covarl
ifilel ifile2 ofile

(“covariance [divisor was n-1]")

0(1,x) = Covary { (i, (t',x),i,(t,x)),x =%

covar Or
ifilel ifile2 ofile

(“covariance [divisor was n-0] for each record”)

0(t, 1) = Covary{ (i, (t',X),i,(t',x)),t' =4

weighted by area weights obtained by the input records as described in the first
paragraph of Section 3.7 “The concept of areaweights’ on page 27.

covar Orw
ifilel ifile2 ifile3 ofile

(“covariance [divisor was n-0] for each record (using aweight file)”)

o(t,1) = Covary{ (i, (t',x),i,(t',x)),t' =48

weighted by {i,(t',x),t' =14 .

Ifiriterorifite2zisaLOLA or GRIB file and constant area weights should be
used instead of the area weights which correspond to the grid described in the
LOLA or GRIB record, use -const, 1 instead of i fi 1 e3. (For an explanation see
function const (page 50) and Section 3.2 “Combining different functions’ on
page 19 and Section 3.3 “Advanced standard input” on page 21.)

PAGE 117

covar 1r

ifilel ifile2 ofile

(“covariance [divisor was n-1] for each record”)

o(t,1) = Covar, { (i, (t',x),i,(t,x)),t'=4

weighted by area weights obtained by the input records as described in the first
paragraph of Section 3.7 “The concept of areaweights’ on page 27.

covar 1rw

cor

ifilel ifile2 ifile3 ofile

(“covariance [divisor was n-1] for each record (using aweight file)”)

o(t,1) = Covar { (i, (t',x),i,(t',x)),t'=18

weighted by {i;(t',x'),t' =¢ .

IfititetorifilezisaLOLA or GRIB file and constant area weights should be
used instead of the area weights which correspond to the grid described in the
LOLA or GRIB record, use -const, 1 instead of i fi 1 e3. (For an explanation see
function const (page 50) and Section 3.2 “Combining different functions’ on
page 19 and Section 3.3 “Advanced standard input” on page 21.)

ifilel ifile2 ofile

(“correlation”)

0(L,x) = Cor{ (i, (t',x),i,(t',x)),xX =%

For correlation without subtracting the mean see function nor ndot prod (page 94).

PAGE 118

corr

corr

ifilel ifile2 ofile
(“correlation for each record”)
For every record t only those field elements x belong to the sample, which have

i, (t,X) #miss and i, (t, X) # miss. Itis

o(t,1) = Cor{ (i (t',x),i,(t',x)),t'=48

weighted by area weights obtained by the input records as described in the first
paragraph of Section 3.7 “ The concept of areaweights’ on page 27.

For correlation without subtracting the mean see function nor ndot prodr (page 95).

w

ifilel ifile2 ifile3 ofile

(“correlation for each record (using aweight file)”)

For every record t only those field elements x belong to the sample, which have

i, (t,X) #miss and i, (t, X) # miss and i, (t,x) # miss. Thenitis

o(t,1) = Cor{ (i, (t',x),i,(t',x)), t'=4

weighted by {i;(t',x'),t' =¢ .

For correlation without subtracting the mean see function nor ndot pr odr w

(page 95).

Ifitriterorifite2isaLOLA or GRIB file and constant area weights should be
used instead of the area weights which correspond to the grid described in the
LOLA or GRIB record, use -const, 1 instead of i fi 1 e3. (For an explanation see
function const (page 50) and Section 3.2 “Combining different functions’ on
page 19 and Section 3.3 “Advanced standard input” on page 21.)

PAGE 119

4.19 Regression
regres
ifile ofile

(“regression”) The values of theinput filei fi1 e are assumed to be distributed as
N (a+ bt, 02) with unknown a, b, and g2 and with record number t. This
function estimates the parameter b . For every field element x only those records

t belong to the sample S(x) , which have i (t, X) # miss. Itis

) 1 0
| (t,x) — i (t', x) - t
o(Lx) = tD;x) #S(X) DZ() ™ #S(%) DZ(X) H

m;)Dt_#s(x) DZ() it

detrend
ifile ofile

(“detrend”) Every time seriesinifile islinearly detrended. For every field ele-
ment X only those records t belong to the sample S(x) , which have
i (t,x) Zmiss. With

[1 [1 /]
i (t,X) ———~ i(t, x) EIt—— DZ t
X)D #S(x) . ” #S(X) y s 0

-1 DZ =
tI];x)D #S(X)t' (x) .

b(x) = Y&

and

a(x)

#S(x)tD;)I(t X) —b (X) D#S(tD;)

itis
o(t,x) = i(t,x) —(a+bht)

This function has to keep the fields of al records concurrently in the memory. If
not enough memory is available, the user should use the functionstrend

(page 121) and subt rend (page 121).

PAGE 120

trend
ifile ofilel ofile2

(“trend”) The values of the input filei i1 e are assumed to be distributed as
N (a+ bt, 02) with unknown a, b, and g2 and with record number t. This
function estimates the parameters a and b. For every field element x only those

records t belong to the sample S(x) , which havei (t, X) # miss. Itis

0 1 oo O 1 N
2, 000 a2 T 05 - 7509 L Ry

g1 DZ t'H
IDZ(X)D #S(X)t' (x) .

0,(L,x) =

and

= 1 i — 01 [
0,(1,x%) B IDZ(X)I (t,x) =0, (1, x) 7S (9 tDZ(X) t5

Thusthe estimation for a isstored inofi 1 e1 and that for b isstoredinofile2. To
subtract the trend from the data see function subt rend (page 121).

subt rend
ifilel ifile2 ifile3 ofile

(“subtract trend”) This function is for subtracting a trend computed by the func-
tiontrend (page 121). Thetypical function call for detrend the datainitiie and
to store the detrended datainofile is

ext subtrend ifile -trend ifile ofile
Itis
0(t,X) =iy (t,X) = (i, (t,X) +i5(t, x) @)

where t isthe record number. (Thefirst record hast = 1.)

PAGE 121

anoncoupl
ifilel ifile2 ofile

(*anomaly coupling”) If aforcinginstoredinifiie1 drivesthe quantity inifiie2,
then with this function the linear regression between both quantities can be com-
puted.

Covarg{ (iy (t',x),i,(t',x)),x" =%

o(l,x) =
Varg{i, (t',x), X' =%

anoncoupl r
ifilel ifile2 ofile

(“anomaly coupling for each record”) If aforcingin stored initiie1 drivesthe
quantity inifi1e2, then with this function the linear regression between both
guantities can be computed. For every record t only those field elements x

belong to the sample, which have i, (t, X) # miss and i, (t, X) # miss. Itis

Covary{ (i, (t',x),i,(t',x)), ' =1

o(t,1) =
Varg{i (t',x),t' =1

weighted by area weights obtained by the input records as described in the first
paragraph of Section 3.7 “The concept of areaweights’ on page 27.

anontoupl rw
ifilel ifile2 ifile3 ofile

(“anomaly coupling for each record (using aweight file)”) If aforcing in stored
inifile1drivesthequantity inifiie2, then with thisfunction the linear regression
between both quantities can be computed. For every record t only thosefield ele-
ments X belong to the sample, which have i, (t, x) # miss and i, (t, X) # miss

and i, (t,x) #miss. Thenitis

PAGE 122

Covary{ (i, (t',x),i,(t',x)),t' =18

o(t,1) =
Varg{i (t',x),t' =1

weighted by {i,(t',x),t' =8 .

Ififiterorifile2isaGRIB fileand constant areaweights should be used instead
of the area weights which correspond to the grid described in the GRIB record,
use -const, 1 instead of i i1 e3. (For an explanation see function const (page 50)
and Section 3.2 “Combining different functions’ on page 19 and Section 3.3

“ Advanced standard input” on page 21.

4.20 Tests, confidenceintervals, and co.

In this chapter the following notions are used

Name of
distribution Density Distribution
St udent -t t
n

-squar e h 2
X n Xn
Bet a

b, 4 B (p. q)

where n isthe degree of freedom and p, g are constants.

It follows some well known statistical theory about optimal 2-sided tests. Let aset 6 of
parameters be given, let for every & 16 a probability P be given, and let the null
hypothess & = 9, to betested. Let for thesample X = (X, ..., X)) thestatistic of a
test problem be denoted by Tﬁo' Then the 2-sided test ¢ 9, at risk a hastheform

0if T, (x) O[C,C
05,00 = 0 020 1
0 1if Tﬁo(x) 0[C,CJ

@
where the two constants C,, C, are chosen in away that firstly, under the conditions of
the null hypothesis, the probability of rejection of this null hypothesisis a, and sec-
ondly that this probability is greater under the conditions of the alternative.

PAGE 123

Asregards the first condition: The requested probability is

C,

Pg, (b5,(X) =1) = 1Py (Ty (X) O[C,C) = 1-[fy (Dt @
Cl

where fso is the density function of TSO(X) under the probability Pao- Thisleads to
the first equation for determining C,, C,:

C,

[fs, (Dt = 1-a 3)
C,

Asregards to the second condition: This condition is equivalent to

Py, (95,(X) =1) = min_ (Py ($5 (X) =1) @
with
C2
Py (0g, (X) =1) = 1-Py (¢, (X) =0) = 1—J'fu (t) dt (5
Cl

where fq is the density function of T190 (X) under the probability Pg. In nearly all
practical applications (possibly after a suitable transformation of the parameters) f,

can be written in the form
2
f (1) = (tOA) g(u)h(t)e” (©)

with suitable defined functions g and h and set A. (Distribution families of this kind

are called exponential families.) Now equation (4) can now be written as

CZ
9 _
_aucffu (t) dt =0 (7)

V=79,
Itis

a%fu (1) = (t DA)g_g(u) htye® + (t0A) tg(9)h(t) e ®

PAGE 124

and differentiating of 1 = J’ f, (t) dt (density functions are normalised to the overall
probability of one) leadsto

99 (u) 99 (u)
0=2970f (=2 "t (dt+fif (=22 +E ©
as) o g Sl Jt g(9) 5o

where Eg is the expectation value of TSO(X) under Pgy. Thus it is

g—g(U) = —g(9) Ey and equation (8) rewritesto
af t) = —Eqd, (1) +1tfg (t
3500 () = —Egd, (1) +1fs (1)

Equation (7) is now equivalent to

CZ C2
[tf,, (Dt = Eg [f, (Dt
C C

1 1
Using equation (3) one gets the second equation for determining C, C,:

C,

[ty (Dt = 5 (1-a)
G,

It follows some well known statistical theory about optimal confidence intervals. The
optimal confidenceinterval C (X) atrisk a, that isthe true parameter 9 iscovered by
thisinterval at probability 1 —a, informula P4 (3 0 C(X)) = 1-a, isconstructed

as

9 0C(X) = 5 (x) =0 &

this means that the parameter 8’ belongs to the confidence interval if and only if the

null hypothesis & = §' cannot beregected at risk a .

More details can be found in [5]. Look for “unbiased unifomly most powerful tests’.

PAGE 125

st udentt
ifile ofile
(“ student-t”) Computes the distribution function of the student-t distribution.

0 (t’ X) = tdegree_of_freedom (i (t’ X))

studentti nv
ofilel ofile2 ofile3 ofil ed

(“student-t inverse”) This function computes for the student-t-distribution some
significance areas. The test resultsin “significant lower” if the corresponding sta-
tistic is lower than the number inofi1e1. It resultsin “significant greater” if the
corresponding statistic is greater than the number inofi1e2. And it resultsin “sig-
nificant different” if the corresponding statistic islower than the number inofii e3

or greater thanthat inofile4. Itis

_ 1 .
0y (1,1) = tdegree_of_freedom (risk)
-1 .
0, (L,1) = tdegree_of_freedom (1—risk)
-1 .
O3 (L,1) = tdegree_of_freedom (risk/2)
-1 .
04 (L,1) = tdegree_of_freedom (1-risk/2)
chi squar e

ifile ofile

(“x2") Computes the distribution function of the x2-distribution.

0 (t’ X) = Xiegree_of_freedom (i (t’ X))

chi squar ei nv
ofilel ofile2 ofile3 ofile4d

(“x?2 inverse”) Thisfunction computes for the X 2 -distribution some significance

areas. Thetest resultsin “significant lower” if the corresponding statistic islower

PAGE 126

than the number inofi 1 e1. It results in “significant greater” if the corresponding
statistic is greater than the number inofi 1 e2. And it resultsin “significant differ-
ent” if the corresponding statistic is lower than the number in of i 1 e3 OF greater
thanthat inofiies. Itis

_ 02 01, .
01(1’ 1) = [Xdegree of_freedom] (risk)

_ 0z 0-1 .
0, (L1 = [Xdegree of freedom] (1-risk)
0;(L,1) =¢C,
0,(L1) =¢C,

where C,, C, isthe solution of the following equation system:

CZ
_[hdegree_of_freedom (X)dx = 1-risk
Cl
C2
I hdegree_of_freedom +2 (X)dx = 1—risk
Cl

bet a
ifile ofile
(“B") Computes the distribution function of the (3 -distribution.

o(t,x) = B(p,q) (i(t,x))

bet ai nv
ofilel ofile2 ofile3 ofiled

(“B inverse”) Thisfunction computes for the 3-distribution some not signifi-
cance area. Thetest resultsin “significant lower” if the corresponding statistic is
lower than the number inofi 1 e1. It resultsin “significant greater” if the corre-
sponding statistic is greater than the number inofi 1 e2. And it resultsin “signifi-
cant different” if the corresponding statistic is lower than the number inofi1es or

greater thanthat inofiea. Itis

PAGE 127

0,(1,1) = (B(p,q))(risk)
0,(1,1) = (B(p,)t (L~risk)
0;(L,1) =¢C,

0,(1,1) =C,

where C,, C, isthe solution of the following equation system:

C,

[bp.q (%) o

C,

1-risk

C,
I p+1q(x)dx = 1-risk
C

1
meanst ati st <n>
ifilel ... ifile<n> ofile

(“mean statistic”) The values of theinput fileiti e<j > are assumed to be distrib-
utedas N (a L, A
putes the statistic of ZJ

A\.02) with user given A; and unknown 02. This function com-
fig—¢ with user given F; and c. For every field
element x only those records t belong to the sample S (x) , which have

ij (t,X) Zmiss. Itis

r2. D_UZD n 1

D n
0 Ll oOSgr i (4, x) =
qZ# S (X)O DIZ #S (x)mg(x)

o(l,x) =

)\ -1 D| (t,X) — 1 i (t',X)DZ
Z #S () - nJ; ; "5 00 D%(x) n

j=1

meansi gni f <n>
ifilel ... ifile<n> ofile

(“mean significance level”) The values of theinput fileiti i e<j > are assumed to
be distributed as N (a L, A

tion computes the significance level of the 1-sided test Zjn: T 2c with user

A\.02) with user given A; and unknown 02. Thisfunc-

PAGE 128

given r| and c. For every field element x only those records t belong to the
sample SJ (x) , which have ij (t, X) # miss. With

B n rJz J _1/2D n 1
[O r I (t,x) —cd
T = 2700 027 (X)mgu
1 n
> (t,x) - (t X)D
3 #5 () = m;)%; "3 (X)t D%()
j=1
itis
0(1,x) = tzn_ #%(X)_n(T(X))

meanlt est <n>
ifilel ... ifile<n> ofile

(“mean 1-sided test”) The values of theinput filei i1 e<j > are assumed to be dis-
tributed as N (a [, A

if Z |ssgn|f|cantly lower or significantly greater than ¢ with user given

A\.02) with user given A; and unknown o2 . Thisfunction tests

g and c. For every field element x only those records t belong to the sample

S] (X) , which have ij (t, X) # miss. With

|:| n r2)\ D—1/2|:| n 1
Oy g 0
EEZ 7S 000 DZ "% (x)m;)' (t,x) -

T(x) = =1
-1 H 2 |:|2
z)\ ; (t X) — #S(x) ; Ii(t’X)D
Z#S (x) —ni =1)
j=1
itis
D .
E 1 if T(x) >t#Sl(x)+ v, (x) —n (1-T1isK)
o(1,x) = O . .
(1) 5—1 if T(x) <t#Sl(x)+ +#Sn(x)—n(r|Sk)
O 0 ese

PAGE 129

Thus a1l means “significant greater”, a-1 means “significant lower”, and a0

means “no significance in the sign”.

nmean2t est <n>
ifilel ... ifile<n> ofile

(“mean 2-sided test”) The values of the input filei i1 e<j > are assumed to be dis-
tributed as N (aj, A j 02) with user given)\j and unknown o2 Thisfunction tests
if Z:‘z 178 Issignificantly different to ¢ with user given g and c. For every
field element x only those records t belong to the sample SJ (x) , which have

ij (t, X) # miss. With

T(x) = =1 L
n
S SR 0 1 v 0°
- _ZN ; D'J'(t’x) #S(x),% |j(t,x)D
Z#SJ(X)_nJ:1 tdS(x)] t' 0SS ()
j=1
itis
o -1 .
El if T(X) Zt#Sl(x)+...+#Sn(x)—n(1_”8k/2)
o(l,x) = O -1 .
() E DT(X) St#Sl(x) +...+#§ (x) —n(”Sk/Z)
00 else

Thus a1 means “significant different” and a 0 means “not significant different”.

meanconfi d<n>
ifilel ... ifile<n> ofilel ofile2

(“mean confidence interval”) The values of theinput filei ti 1 e<j > are assumed to
be distributed as N (g, A, 02) with user given A; and unknown o2. Thisfunc-
tion computes the confidence interval for Z”: 178 with user given r; . For
every field element x only those records t belong to the sample SJ (X) , which

have ij (t, X) # miss. With

PAGE 130

on 2)\ D1/2
#sl(x)+...+#sn(x)—n,0(/2%z (X)D
J:

A(x) =t

n
1 1 : 2
|——— AL (X)) ———— l. t',XD
N Z Jtmg(x)%(: #Sl(x)t’Dé(x)J()D
Z#Sj(x)—nJ‘l
j=1

itis

n

oLy =y rhﬁm;@ij (t,X) —A (%)

J:l]
. 1 .

0(1,x) = r—- L (t,x) +A(X)
PAES IO

The lower boundary of the confidence interval istherefore o, (1, x) , and the

upper boundary is therefore o, (1, X) .

meanst ati st
ifile ofile

(“mean statistic”) The values of the input fileiti1 e are assumed to be distributed
as N (a, 02) with unknown 2. This function computes the statistic of a—c
with auser given c. For every field element x only those records t belong to the
sample S(x) , which have i (t, x) # miss. Thisfunction is a special case of the

function neanstati st 1 (meanst at i st <n> (page 128)) with rp,=1 and)\1 =

nmeansi gni f
ifile ofile

(“mean significance level”) The values of the input fileifi e are assumed to be
distributed as N (a, 62) with unknown ¢2. This function computes the signifi-
cance level of the 1-sided test a=> ¢ with user given c. For every field element x
only those records t belong to the sample S(x) , which have i (t, X) # miss.
Thisfunction is a special case of the function neansi gni f 1 (eansi gni f <n>

(page 128)) withr, = 1 and A} =

PAGE 131

nmeanlt est
ifile ofile

(“mean 1-sided test”) The values of the input fileifi1e1 are assumed to be dis-
tributed as N (a, 02) with unknown 2. Thisfunction testsif a is significantly
lower or significantly greater than ¢ with user given c. For every field element x
only those records t belong to the sample S(x) , which have i (t, X) # miss.
Thisfunctionisaspecial case of the function neanitest 1 (reanit est <n> (page 129))
withr, = 1and A, = 1.

Thusinofile al means“significant greater”, a-1 means“significant lower”, and

a0 means “no significance in the sign”.

mean?2t est
ifile ofile

(“mean 2-sided test”) The values of the input filei i1 e1 are assumed to be dis-
tributed as N (a, 62) with unknown 2. Thisfunction testsif a is significantly
different to ¢ with user given c. For every field element x only those records t
belong to the sample S(x) , whichhavei (t, X) # miss. Thisfunctionisaspecial
case of the function meanzt est 1 (mean2t est <n> (page 130)) with r, = 1 and

A =1

Thusinofile al means“significant different” and a 0 means “not significant dif-

ferent”.
meanconfi d

ifile ofilel ofile2

(“mean confidenceinterval™) Thevaues of theinput filei ti1 e1 are assumed to be
distributed as N (a, 62) with unknown o2. This function computes the confi-
denceinterval for a. For every field element x only thoserecords t belong to the
sample S(x) , which have i (t, x) # miss. Thisfunction is a special case of the

function neanconf i d1 (eanconf i d<n> (page 130)) with rp, =1 and)\1 =1.

The lower boundaries are therefore stored in of i 1 e1 and the upper onesin of i e2.

PAGE 132

meandi ff st ati st
ifilel ifile2 ofile

(“mean difference statistic”) The values of theinput fileifi1e<j > are assumed to
be distributed as N (aj, 02) with unknown a2. This function computes the sta-
tistic of @, —a, —c with auser given c. For every field element x only those
records t belong to the sample SJ (X) , which have ij (t, X) £ miss. Thisfunction
isaspecial case of the function reanst ati st 2 (eanst at i st <n> (page 128)) with
rp,=214r,=-landA, = A, = 1.

meandi f f si gni f
ifilel ifile2 ofile

(“mean difference significance level”) The values of theinput fileitiie<j > are
assumed to be distributed as N (aj, 02) with unknown ¢2. This function com-
putes the significance level of the 1-sided test a;, —a, > ¢ with auser given c.
For every field element x only those records t belong to the sample Sj (x) ,
which have ij (t,x) #miss. Thisfunction isaspecia case of the function

meansi gni f 2 (maansi gni f <n> (page 128)) with r= 1, r, = -1 and)\1 =)\2 =1.

meandi f f 1t est
ifilel ifile2 ofile

(“mean difference 1-sided test”) The values of theinput filei fi1 e<j > are assumed
to be distributed as N (a, 02) with unknown ¢2. Thisfunction testsif a, —a,
issignificantly lower or significantly greater than ¢ with auser given c. For
every field element x only those records t belong to the sample Sj (X) , which
have ij (t, x) #miss. Thisfunction isaspecia case of the function neanit est 2

(meanitest<n> (page 129)) withr, = 1,r, = =l andA; = A, = 1.

Thusinofile al means“significant greater”, a-1 means“significant lower”, and

a0 means “no significance in the sign”.

PAGE 133

meandi f f 2t est
ifilel ifile2 ofile

(“mean difference 2-sided test”) The values of theinput filei fi1 e<j > are assumed
to be distributed as N (a, 02) with unknown ¢2. Thisfunction testsif a, —a,
issignificantly different to ¢ with auser given c. For every field element x only
those records t belong to the sample SJ (X) , which have ij (t,X) Z miss. This
function isaspecial case of the function nean2t est 2 (mean2t est <n> (page 130)) with
rp,=214r,=-landA, = A, = 1.

Thusinofile al means“significant different” and a 0 means “not significant dif-

ferent”

meandi ff confi d
ifilel ifile2 ofilel ofile2

(“mean difference confidence interval”) The values of the input fileifiie<j > are
assumed to be distributed as N (g, 02) with unknown ¢2. This function com-
putes the confidence interval of a, —a, . For every field element x only those
records t belong to the sample Si (x) , which have ij (t, x) # miss. Thisfunction
isaspecial case of the function neanconfi d2 (meanconf i d<n> (page 130)) with
rp,=14r,=-1landA, = A, = 1.

The lower boundaries are therefore stored in of i 1 e1 and the upper onesin of i e2.

meandi ffdi ffstati st
ifilel ifile2 ifile3 ifiled ofile

(“mean difference of difference statistic”) Thevaluesof theinput fileifiie<j > are
assumed to be distributed as N (a;, 62) with unknown 2. This function com-
putes the statistic of (a, —a,) — (a;—a,) —c with auser given c. For every
field element x only those records t belong to the sample SJ (x) , which have

ij (t, X) # miss. Thisfunction isaspecia case of the function neanst ati st 4 (mean-
stati st<n> (page 128)) withr, = 1,r,=-1,r;=-1,r, = 1 and
A=A, = A3 =7, =1,

PAGE 134

meandi f fdi ffsignif
ifilel ifile2 ifile3 ifiled ofile

(“mean difference of difference statistic”) The valuesof theinput fileifiie<j > are
assumed to be distributed as N (aj, 02) with unknown ¢2. This function com-
putes the significance level of the 1-sided test (a, —a,) — (a3—a,) =c witha
user given c. For every field element x only those records t belong to the sam-
ple SJ (x) , which have ij (t,x) #miss. Thisfunction isaspecia case of the
function neansi gni f 4 (meansi gni f <n> (page 128)) with

rp,=4Lr,=-4ry=-1r, = 1and)\1:)\2=)\3:)\4: 1.

meandi ff di f f 1t est
ifilel ifile2 ifile3 ifiled ofile

(“mean difference of difference 1-sided test”) The values of theinput fileifil e<j >
are assumed to be distributed as N (a, 02) with unknown o2. Thisfunction
testsif (@, —a,) — (a3—a,) issignificantly lower or significantly greater than
¢ with auser given c. For every field element x only those records t belong to
the sample SJ (X) , which have ij (t,x) # miss. Thisfunction isaspecia case of
the function neanitest 4 (reanitest <n> (page 129)) with

rp,=Lr,==-Lrg=-1r, = 1and)\1:)\2=)\3:)\4: 1.

Thusinofile al means*“significant greater”, a-1 means“significant lower”, and

a0 means “no significance in the sign”.

meandi f f di f f 2t est
ifilel ifile2 ifile3 ifiled ofile

(“mean difference of difference 2-sided test”) The values of theinput fileifi1 e<j >
are assumed to be distributed as N (a,, 62) with unknown ¢2. This function
testsif (@, —a,) — (ag3—a,) issignificantly different to ¢ with auser given c.
For every field element x only those records t belong to the sample S] (x) ,
which have ij (t,x) # miss. Thisfunction isaspecia case of the function

mean2t est 4 (mean2t est <n> (page 130)) withr; = 1,r,=-1,r,=-1,r, = 1 and
A=A, = A3 =7, =1,

PAGE 135

Thusinofile al means“significant different” and a 0 means “not significant dif-

ferent”

meandi ffdiffconfid

pool

ifilel ifile2 ifile3 ifiled ofilel ofile2

(“mean difference of difference confidence interval”) The values of the input file
i1i1e<i>are assumed to be distributed as N (a;, 02) with unknown o2. This
function computes the confidence interval for (a; —a,) — (a;—a,) . For every
field element x only those records t belong to the sample SJ (x) , which have

ij (t,xX) #miss. Thisfunction isaspecia case of the function reanconfi d4 (mean-
confi d<n> (page 130)) withr, = 1,r,=-1,r;=-1,r, = 1 and
A=A, = A3 =7, =

The lower boundary of the confidence interval istherefore o, (1,) , and the

upper boundary is therefore o, (1, X) .

The lower boundaries are therefore stored in of i 1 e1 and the upper onesin of i | e2.

edvarstati st<n>
ifilel ... ifile<n> ofile

(“pooled variance statistic”) The values of theinput filei fi1e<j > are assumed to
be distributed as N (&, A, 02) with user given A; and unknown 02. Thisfunc-

tion computes the statistic of g2/ ¢ with auser given c. For every field element
x only those records t belong to the sample SJ (X) , which have ij (t, X) £ miss.

Itis

1 1 . 2
0(1,x) = At D| (t, x) — i (', x) 2
Z#s () - nJ; oy 0 T &, 10

j=1

PAGE 136

pool edvar si gni f <n>
ifilel ... ifile<n> ofile

(“pooled variance significance level”) The values of theinput fileitiie<j > are
assumed to be distributed as N (&, A, 02) with user given A; and unknown 02,
This function computes the significance level of the 1-sided test 02 > ¢ witha
user given c. For every field element x only those records t belong to the sam-
ple SJ (x) , which have ij (t, X) # miss. With

n

_1 1 1 N 1 N

T =35 2N tD; i (6% #S(x)t,% (g

Z#SJ (X) _nj=l (x)] (x)

i=1
itis

_ .2
0(1, X) - ijn:1#§(x)_n(-r(x))
pool edvar 1t est <n>

ifilel ... ifile<n> ofile

(“pooled variance 1-sided test”) The values of theinput filei ti 1 e<j > are assumed
to be distributed as N (a;, A j02) with user given A; and unknown 02. Thisfunc-
tion testsif o2 issignificantly lower or significantly greater than ¢ with a user
given c. For every field element x only those records t belong to the sample

SJ (x) , which have ij (t, X) # miss. With

n
= 1' ; -1 |:| _ 1 H I |:|2
T =7 22 tmg(x) SRS (X)t'm;x)lj 2
S #S (%) —nl=1
=1

itis

PAGE 137

pool

0 . 2 -1 .
1 if T(x) =2 " 0 (1-risk
E ! (x) %)(zjzl#q(x)—nm (1K)
o(l,x) = U 2 -1
O-1 if T(x) < O (risk
gt TH g’(zjnzl#s;(x)—rm (ris)
. 0 dse

Thus a 1 means “significant greater”, a-1 means “significant lower”, and a0

means “no significance in the sign”.

edvar 2t est <n>
ifilel ... ifile<n> ofile

(“pooled variance 2-sided test”) The values of the input filei ti 1 e<j > are assumed
to bedistributed as N (a, A, 02) with user given A; and unknown 02. Thisfunc-
tion testsif o2 issignificantly different to ¢ with auser given c. For every field
element x only those records t belong to the sample S] (X) , which have

ij (t, X) #miss. With

n

_1 1 1 N 1 N
T =27 2N th(x) (4 #5 09 m%(x)lj 0
Y #S(x) —nl” !
j=1
itis
01
o(Lx) = O 1if T(x) O[C,,C,]

00 if T(x) O[C,C,

where C,, C, isthe solution of the following equation system:

C2

J'h o (x)dx = 1-risk
zj:l#q (x) =n

Cl

C2
he. (X)dx = 1-risk
({zjzl#g(x)—mz

PAGE 138

pool

Thusinofile al means“significant different” and a 0 means “not significant dif-

ferent”

edvar conf i d<n>
ifilel ... ifile<n> ofilel ofile2

(“pooled variance confidence interval”) The values of theinput fileifile<j > are

assumed to be distributed as N (a;, A;02) with user given A; and unknown 02,

I
This function computes the confidence interval for o2. For every field element x
only those records t belong to the sample SJ (X) , which have ij (t, X) # miss.

With

T(X) = A1 5, (1) - 1 i (00
Z #S (x) — le ; 50 Dg(x) J -
j=1

itis

0,(1x) = El—T(x)

2

0,(LX) = CilT(x)

where C,, C, isthe solution of the following equation system:

(X)dx = 1-risk

G,
h
({ Z]": #5090 -n
C

(X)dx = 1—risk

2
({hzrzl#q(x) -n+2

The lower boundary of the confidence interval istherefore o, (1,) , and the

upper boundary is therefore o, (1, X) .

PAGE 139

varstati st
ifile ofile

(“variance statistic”) The values of theinput filei ti1 e are assumed to be distrib-
uted as N (a, 02) with unknown ¢2. This function computes the statistic of
02/ ¢ with auser given c. For every field element x only those records t belong
to the sample S(x) , which have i (t, X) # miss. Thisfunction isaspecia case

of the function pool edvarstati st 1 (pool edvar st ati st <n> (page 136)) with)\1 =1.

var si gni f
ifile ofile

(“variance significance level”) The values of the input filei i1 e are assumed to
be distributed as N (a, 62) with unknown 2. This function computes the sig-
nificance of the 1-sided test 62 > ¢ with auser given c. For every field element
x only those records t belong to the sample S(x) , which have i (t, X) # miss.
Thisfunctionisaspecial case of the function pool edvarsi gni f 1 (pool edvar si gni f <n>
(page 137)) with A, = 1.

var 1t est
ifile ofile

(“variance 1-sided test”) The values of the input filei i1 e are assumed to be dis-
tributed as N (a, 62) with unknown o2. Thisfunction testsif a2 issignificantly
lower or significantly greater than ¢ with auser given c. For every field element
x only those records t belong to the sample S(x) , which have i (t, X) # miss.
Thisfunction is a special case of the function pool edvar 1t est 1 (pool edvar 1t est <n>
(page 137)) with A, = 1.

Thusinofile al means*“significant greater”, a-1 means“significant lower”, and

a0 means “no significance in the sign”.

PAGE 140

var 2t est
ifile ofile

(“variance 2-sided test”) The values of the input filei i1 e are assumed to be dis-
tributed as N (a, 02) with unknown o2. Thisfunctiontestsif a2 issignificantly
different to ¢ with auser given c. For every field element x only those records t
belong to the sample S(x) , which havei (t, X) # miss. Thisfunctionisaspecia

case of the function pool edvar 2t est 1 (pool edvar 2t est <n> (page 138)) with)\1 =1.

Thusinofile al means*“significant greater”, a-1 means“significant lower”, and

a0 means “no significance in the sign”.

varconfid
ifile ofile

(“variance confidenceinterval”) The values of theinput fileifi1 e are assumed to
be distributed as N (a, 62) with unknown ¢2. This function computes the confi-
denceinterval for o2. For every field element x only those records t belong to
the sample S(x) , which have i (t, x) # miss. Thisfunction is a special case of

the function pool edvar confi d1 (pool edvar 2t est <n> (page 138)) with)\1 =1.

The lower boundaries are therefore stored in of i 1 e1 and the upper onesin of i i e2.

var quot st at i st
ifilel ifile2 ofile

(“variance quotient statistic”) The values of theinput filei fi 1 e<j > are assumed to
be distributed as N (a, ojz) with unknown ojz. This function computes the sta-
tistic of (0%/05) /¢ with auser given c. For every field element x only those

records t belong to the sample SJ (x) , which have ij (t, X) # miss. With

- 1 , 1 N
Tj (x) = /\/mt D;(X) Elj (t, x) _#Sj 0) D;(X) Ij (t', X)E

itis

PAGE 141

T, (X)

0(Lx) = T,(X) +cT,(x)

var quot si gni f
ifilel ifile2 ofile

(“variance quotient significance level”) The values of theinput fileiti1e<j > are
assumed to be distributed as N (aj, crjz) with unknown ojz. This function com-
putes the significance level of the 1-sided test 02/ 63 > ¢ with user given c. For
every field element x only those records t belong to the sample Sj (x) , which

have ij (t, X) # miss. With

i 1 - ~ 1 N
T (%) = J#_"_s, 0T, L,) T, 2, 10
itis

S0 -1#S(100 T §
0(1,x) = By > ’ 2 DD 1 (X) +CT2(X)%

var quot 1t est
ifilel ifile2 ofile

(“variance quotient 1-sided test”) The values of the input fileifile<j > are
assumed to be distributed as N (g, crjz) with unknown ojz. Thisfunction testsiif
0%/0% is significantly lower or significantly greater than ¢ with user given c.
For every field element x only those records t belong to the sample Sj (x) ,
which have ij (t, X) # miss. With

_ 1 R | =
T = «/#SJ) -1, D;(x) 09 "800, Dé(x) (1,05
and

T, (%)
T, (x) + cT, ()

T(x) =

PAGE 142

itis

El i T(x)2BE#81()2()_1,#52()2()_1g_1(1—risk)
o(lL,x) = O - 1
(4% a1 if T(x)sBE#Sl(:) 1,#82()2() l%1(risk)
O

0 dse

Thus a1 means “significant greater”, a-1 means “significant lower”, and a0

means “no significance in the sign”.
var quot 2t est
ifilel ifile2 ofile

(“variance quotient 2-sided test”) The values of the input fileitiie<j > are
assumed to be distributed as N (&, ojz) with unknown 0j2. Thisfunction tests if
02/ 03 issignificantly different to ¢ with user given c. For every field element

x only those records t belong to the sample SJ (x) , which have ij (t, X) £ miss.

With

- 1 , 1 N
Tj (x) = /\/mt D;(X) Elj (t, x) _#Sj)) D;(X) Ij (t', X)E
and

_ T, (%)
TO) = T +er, ™
itis

o(Ly) = J1if T(x O[C,C)
' 00if T(x) O[CLC,]

where C,, C, isthe solution of the following equation system:

PAGE 143

C2
_1(X)dx = 1-risk

[e 0 -1 45,00
c, 2z ' 2

C,

Porsos,, 50 096K = 11

C, 2 2

Thusinofile al means“significant different” and a 0 means “not significant dif-

ferent”.

var quot confi d
ifilel ifile2 ofile

(“variance quotient confidence interval”) The values of the input filei i1 e<j > are
assumed to be distributed as N (g, crjz) with unknown ojz. Thisfunction tests if
0%/0% issignificantly different to ¢ with user given c. For every field element
x only those records t belong to the sample S (x) , which have ij (t, X) # miss.
With

_ 1 , 1 - 2
%= J#S, 01,2, 0 0 B @, 2,1 OO0

itis

_ (1_C2) Tl (X)
011X = ===

_ (1_C1) Tl (X)
021X = == 75

where C,, C, isthe solution of the following equation system:

CZ

.Ib#sl(x) -1 #sz(x)_l(X) dx = 1—risk
C; 2 ' 2

CZ

s, g () = 11
C, 2 ' 2

PAGE 144

The lower boundary of the confidence interval istherefore o, (1, x) , and the

upper boundary is therefore o, (1, X) .
regresstati st
ifile ofile

(“regression statistic”) The values of theinput fileiti1 e are assumed to be dis-
tributed as N (a + bt, 62) with unknown a, b, and 2 and with record number
t. Thisfunction computes the statistic of b —c with auser given c. For every
field element x only those records t belong to the sample S(x) , which have

i (t,X) #miss. With

3 (1, %) — o i (t, 005 vl
o D #S(X) DZ(X) . #S(X) DZ()

b =
0__1 ¢
tDZ(x)D #S(X)t’DZ(x) .
itis
J#S(N) =2 (b-c) /\/t—#six)
0(1,x) = '

1 ' O _ 172
A/[%“”‘) #S(x)t.DZ((10 -b7 #S() (X)tm}

regr essi ons
ifile ofile

(“regression significance level”) The values of theinput fileiti1 e are assumed to
be distributed as N (a + bt, 02) with unknown a, b, and g2 and with record

number t. Thisfunction computes the significance level of the 1-sided test b> ¢
with auser given c. For every field element x only those records t belong to the

sample S(x) , which have i (t, X) # miss. With

NN 1 0

3,00 G, 2, 0, 2,
= '
IDZ(X)D #S(X)t’ DZ(X) .

PAGE 145

and

n 1
oo - NHS(X) —2(b—c)J _#S(x) ,
v O p20]2
J[%(t X) — #S() DZ()I(t X5 th #S() (x)tD}
itis

0(LX) =ty _o(T(X)

regresltest
ifile ofile

(“regression 1-sided test”) The values of theinput filei fi1 e are assumed to be
distributed as N (a + bt, 62) with unknown a, b, and 62 and with record
number t. Thisfunction testsif a issignificantly lower or significantly greater
than ¢ with user given c. For every field element x only those records t belong

to the sample S(x) , which have i (t, X) # miss. With

3 (1, %) — o (v, 000 - 1L ¢
p = tDZ(x)D #S(X) ¢ DZ(x) HE#S() DZ(x) 5

- DZ t'H
tD;x)D #S(X) ¢ s .

and
JHS(X) =2 (b - C)J #S(X) DZ
T(x) = (X>
[__1 020k 0
J[D'(t’x) #S(X) . ()I(t Jeis bgt #S(x) DZ t }
itis

1 if T(x)zt;;(x) L (1—risk)

1if T(X) <t , (risk)

O
O
o(1,x) = 0O
E #sl(x)

0 dse

PAGE 146

Thus a1l means “significant greater”, a-1 means “significant lower”, and a0

means “no significance in the sign”.
regres2t est
ifile ofile

(“regression 2-sided test”) The values of the input fileifi e are assumed to be
distributed as N (a + bt, 62) with unknown a, b, and 02 and with record
number t. Thisfunction testsif a issignificantly different to ¢ with user given
c. For every field element x only those records t belong to the sample S(x) ,
which have i (t, X) # miss. With

3 (1, %) — o (00— L1 ¢
- 2,0 w2, 0 T EE, 2,

b
0__1 ¢
tDZ(x)D #S(X)t’DZ(x) .
and
o 1 ,
0 1 o0 g 1]2
/\/|:DI (t.%) #S(X) t DZ(X)I (t ,X)D b Et #S(X) t DZ(X) t D:|
itis

0 : -1 . -1)
o(L,x) = El it T(X) Styg (g 2 (MsK/2) DT(X) 2ty 5 (1-1isk/2)
0 else

Thus a 1 means “significant different” and a 0 means “not significant different”.

regresconfid
ifile ofilel ofile2

(“regression confidence interval”) The values of theinput filei i1 e are assumed
to be distributed as N (a + bt, 62) with unknown a, b, and 62 and with record

number t. Thisfunction computes the confidence interval for b. For every field

PAGE 147

element x only those records t belong to the sample S(x) , which have
i (t,x) #miss. With

3 (t, x) — —=— it 00 - 2L ¢0
b= tDZ(x)D #S(X) ¢ DZ(X) I #5(9 DZ(X) .

G__L1_ DZ t'd
tDZ(x)D #S(X)t’ (x) .

and

A(X) = tysp -2 a/2

NG]2
m“/[i (t, %) — #S() D;).(t)5 bZDt—#S() DZ”tD}
JES(X) —2/\/t— ! t
#S(x)t,DZ(X)

itis
0,(L,x) = b-A(x)
0,(1,x) = b+A(X)

The lower boundary of the confidence interval istherefore o, (1, X) , and the

upper boundary is therefore o, (1, X) .

corstati st
ifilel ifile2 ofile

(“correlation statistic”) The values of the input filesifi1e<j > are assumed to be

distributed as N (aj, ojz) with unknown a and 0j2 and with an unknown corre-

lation p . Thisfunction computesthe statistic of (p —p,) / /1—2pp0—p§ witha
user given p,, . For every field element x only those records t belong to the sam-
ple S(x) , which have i, (t, X) # miss and i, (t, X) # miss. Let the sample cor-
relation denoted by r (x) . With

(r () —pp)
Jl —2r (x) po—pg

rx) =

PAGE 148

itis

0(Lx) = JES() —2——X)__
N1-r' (x)2

For a mathematical explanation see function cor 1test (page 149).

corsignif

ifilel ifile2 ofile

(“correlation significance level”) The values of theinput filesitile<j > are
assumed to be distributed as N (&, ojz) with unknown &, and oj2 and with an
unknown correlation p . This function computes the significance level of the 1-
sided test p = p,, with auser given p,. For every field element x only those
records t belong to the sample S(x) , which have i, (t, X) # miss and

i, (t,X) # miss. Let the sample correlation denoted by r (x) . With

g = 100 =P 2
Jl—Zr (X) Po—Pg

and

T(X) = JES() —2—X)
J1-r"(x)°?

itis
0(LX) = gy _o(T(X)

For a mathematical explanation see function cor 1test (cor1test (page 149)).

cor 1t est

ifilel ifile2 ofile

(“correlation 1-sided test”) The values of theinput filesi fi1 e<j > are assumed to
be distributed as N (aj, cjz) with unknown a and oj2 and with an unknown cor-

relation p. Thisfunction testsif p issignificantly lower or significantly greater

PAGE 149

than p, with auser given p,,. For every field element x only those records t

belong to the sample S(x) , which have i, (t, x) # miss and i, (t, X) # miss.

Let for every field element x the sample of i fi 1 e<j > be denoted by Xj . The sam-

ple X, isthen transformed to the sample
! = : /Var(XZ)X
2 T Tl T o
/Var(xl)

Now itis Cor (X;, X,) = p, equivalent to Cor (X, X,') = 0. And the latter
oneistested. Itis Cor (X}, X,') = (p—pg)/ /1—2pp0—p(2),andananalogous

formula holds for the sample correlation.

Let the sample correlation denoted by r (x) . With

(r () —pp)
Jl —2r (x) po—pg

r(x) =

and

T(x) = JAS() 22—
N1-=r' (x)2

itis
. -1 .
El it T(X) 2t,qy _o (L-risk)
o(1,x) = , -1 ,
(1,x) 5—1 if T(x)st#sl(x)_z(rlsk)
0 ese

Thus a 1 means “significant greater”, a-1 means “significant lower”, and a0
means “no significance in the sign”.

cor 2t est
ifilel ifile2 ofile

(“correlation 2-sided test”) The values of the input filesi fi1 e<j > are assumed to

be distributed as N (aj, O'J-Z) with unknown a and ojz and with an unknown cor-

PAGE 150

relation p. Thisfunction testsif p issignificantly different to p, with auser
given p,. For every field element x only those records t belong to the sample

S(x) , whichhave i, (t, x) # miss and i, (t, X) # miss.

Let for every field element x the sample of i fi 1 e<j > be denoted by Xj . The sam-

ple X, isthen transformed to the sample

. /Var(Xz)X
2 0—’—Var(xl) 1

Now itis Cor (X;, X,) = p, equivalent to Cor (X;, X,') = 0. And the latter

oneistested. Itis Cor (X, X,') = (p—pg) /41— 2pp0—pc2), and an analogous
formula holds for the sample correlation.

X,' = X

L et the sample correlation denoted by r (x) . With

(r (X) —pg)
Jl—Zr (x) po—pg

rx) =

and

T(X) = JES() —2—X)
Ji-r(x)°

itis

-1
#3, (x)

-1

21 if T(x) st 450

o(1,x) = O
DOelse

,(risk/2) OT(X) 2 thg . _, (1—risk/2)

1

Thus a1 means “significant different” and a 0 means “not significant different”.

corconfid
ifilel ifile2 ofilel ofile2

(“correlation confidence interval”) The values of theinput filesifiie<j > are
assumed to be distributed as N (&, 0j2) with unknown &, and crj2 and with an

unknown correlation p . This function computes the confidence interval for p.

PAGE 151

For every field element x only those records t belong to the sample S(x) ,
which have i, (t, X) # miss and i, (t, X) # miss. Let the sample correlation
denoted by r (x) . With

t#S(x) —-2,0/2
2
#S(X) —2+ t#s(x) 24

Cc =

and

2

c 4 21

A (X) =J SOL—r(X) 0
1-c

itis
0,(L,x) =r(x)-A(X)

0,(L,x) =r(x) +A(X)

The lower boundary of the confidence interval istherefore o, (1,) , and the

upper boundary is therefore o, (1, X) .

The basis of this confidence interval isthe test described at the explanation of
function cor2test (page 150). Every value p,, belongsto the confidence interval

for which the null hypotheses p = p,, can not be rejected.

4.21 Empirical Orthogonal Functions
Some theory about EOF's can be found in [3]. The way how to take area weights into

account isoutlined in [4].
eof

ifile ofilel ofile2

(“empirical orthogonal functions™) This functions computes the (area weighted)
empirical orthogonal functions (EOF's). The eigenvalues are stored inof i 1 e1 and
the corresponding eigenfunctionsin ofi 1 e2. The eigenvalues are sorted in

descending order.

PAGE 152

To print the relative amount of the eigenvalues compared to the total variance,

type after the computations of the EOF's

ext info -div ofilel -sumofilel

To compute the time series of the principal component number <n> and to store

itinthefilepc. <n>. ext, type

ext anom -dotprodr ifile -selrec,<n> <n> ofile2 pc.<n>. ext

The number of EOF’sis one less than the minimum of the number of records and
thefield size.

Let now n bethefield size, m be the number of time steps, let the m x n-matrix
A of the anomalies be defined as

A= (), =M _#iTt' | (t %)

t, X

and let the area weights of the elements on position i be denoted as w; and let
the n x n-matrix W be defined by

(It is possible to suppress the subtraction of the mean, but in this case something

el se comparable to the mean should have been subtracted by the user before.)

The covariance matrix C isnow defined by

where A isthe transpose of A.

The EOF's (ej)j to the eigenvalues ()\j)j are defined as the eigenvectors of
CW,i.eitis CWeJ. =)\jej.

The eigenvectors are orthonormal, i.e. itis

PAGE 153

n
_ 1|fJ—j
We(x)e(x) [
le Ooif j#j

If n<m then the program computes the eigenvectors (f) of W 2cw”? an

afterwardse (x) = w fJ (X) . Because of

T[]
\/\/1/2C\/\/1/2 = —DA\VVU2D Wl/] the elements of w2cw? could
be understood asthe covariances of the “adjusted” anomalies ,/w,a, .

If n>m thenthe program computes the eigenvectors (g]) of LAWA and
afterwards g = = A g and normalizes g at theend. The elements of AWA'
could be understood as area weighted dotproducts of the anomalies of each

record.

This function stores simultaneously all fields of i fi 1 e in the memory and should

therefore not be used for largefiles. For large files use functions eof spat i al

(page 155) resp. eof ti me (page 155).

eof w
ifilel ifile2 ofilel ofile2

(“empirical orthogonal functions (using aweight file)”) The same as function eof
(page 152), but withi i1 e2 asthe weightsinstead of theinternal weight field. The

weightsinitile2 are normalized to the sum of 1 before used.

Thisfunction storesall fieldsof i fi 1 e1 in the memory and should therefore not be
used for large files. For large files use functions eof spat i al w (page 155) resp. eof -

ti mew (page 156).

Ifiti1er isaLOLA or GRIB file and constant area weights should be used
instead of the area weights which correspond to the grid described in the LOLA
or GRIB record, use - const, 1 instead of i fi 1 e2. (For an explanation see function
const (page 50) and Section 3.2 “Combining different functions’ on page 19 and
Section 3.3 “Advanced standard input” on page 21.)

PAGE 154

eof spati al
ifile ofilel ofile2

(“empirical orthogonal function computed in the spatial space”’) The same as
function eof (page 152), but two differences: It does not store all fieldsof ifiiein
the memory and it does the computation always in the spatial space, i.e. it dways
computes the eigensol ution of mi—l EAWI/%TEAWV% in the notion of the
description of eof . Thus, if the number time steps is notable smaller then the
number of not missing field elements per record, function eof ti me (page 155)
should be used instead.

eof spatialw
ifilel ifile2 ofilel ofile2

(“empirical orthogonal function computed in the spatial space (using aweight
file)”) The same as function eof spati al (page 155), but withitiie2 asthe weights
instead of the internal weight field. The weightsinitiie2 are normalized to the
sum of 1 before used.

If the number time steps is notable smaller then the number of not missing field

elements per record, function eof ti mew (page 156) should be used instead.

Ifiti1er isaLOLA or GRIB file and constant area weights should be used
instead of the area weights which correspond to the grid described in the LOLA
or GRIB record, use - const, 1 instead of i fi 1 e2. (For an explanation see function
const (page 50) and Section 3.2 “Combining different functions’ on page 19 and
Section 3.3 “ Advanced standard input” on page 21.)

eofti ne
ifile ofilel ofile2

(“empirical orthogonal function computed in the time space”’) The same as func-
tion eof (page 152), but two differences: It does not store all fieldsof i ti1e inthe
memory and it does the computation aways in the time space, i.e. it aways com-

putes the eigensol ution of LAWAT in the notion of the description of eof .

PAGE 155

Thus, if the number of time stepsis greater than the number of not missing field

elements per record, function eof spati al (page 155) should be used instead.

Thisfunction is creating atemporary file which is normally removed at the end.
But there are some cases in which this function has no chance to remove thisfile,
the most common isthekilling of the process by the unix commandkii1 -9. SOif
thisjob should be killed, it should be done without the option - 9. If this temporar-
ily fileis not removed, the user should do it by hand. Therefore the name of this

fileis printed to standard error.

The size of thisfileis approximately 2 times the number of recordsof i i1 e1 mul-

tiplied by the number of field elements per record.

Sointhecaseof avery bigitile1 the user hasto take care of the directory where
thisfileiscreated. Thisdirectory isstveol rRif such an environment variable exists

and its containsisreally adirectory. Otherwiseit is/tnp.

eof ti mew
ifilel ifile2 ofilel ofile2

(“empirical orthogonal function computed in the time space (using a weight
file)”) The same as function eof ti me (page 155), but withifie2 asthe weights
instead of the internal weight field. Theweightsinitiie2 are normalized to the
sum of 1 before used.

If the number of time stepsis greater than the number of not missing field ele-

ments per record, function eof spat i al w (page 155) should be used instead.

Ifitite1isaLOLA or GRIB file and constant area weights should be used
instead of the area weights which correspond to the grid described in the LOLA
or GRIB record, use -const, 1 instead of i fi 1 e2. (For an explanation see function
const (page 50) and Section 3.2 “Combining different functions’ on page 19 and
Section 3.3 “Advanced standard input” on page 21.)

Thisfunction is creating atemporary file which is normally removed at the end.
But there are some cases in which this function has no chance to remove thisfile,

the most common isthe killing of the process by the unix command«ii1 -9. SOif

PAGE 156

thisjob should be killed, it should be done without the option - 9. If this temporar-
ily fileis not removed, the user should do it by hand. Therefore the name of this

fileis printed to standard error.

The size of thisfileis approximately 2 times the number of recordsof i i1 e1 mul-

tiplied by the number of field elements per record.

Sointhecaseof avery bigitile1 the user hasto take care of the directory where
thisfileiscreated. Thisdirectory isstveol rif such an environment variable exists

and its containsisreally adirectory. Otherwiseit is/tnp.

4.22 Fourier and spectra

fourier
ifile ofile

(“fourier”) Performs the fourier transformation or the reverse fourier transforma-
tion. If the record number n isapower of 2 then the algorithm of the fast fourier

transformationisused. It is
1 n-1

o(t+1,x) = —= i (j+1,x) eg2mit
72,

where auser given € = —1 leadsto the forward transformation and a user given
€ = 1 leadsto the backward transformation. If thefileitiie consists only of

complex records, then the fields of file ofi 1 e, cOmputed by

ext fourier,1 -fourier,-1 ifile ofile

arethe same than that of i ti1e. For real input files see function ret oconpl ex
(page 83).

spectrum
ifile ofile

(“spectrum™) Thisfunction isfor doing a spectral analyses of i fiie. The user has

to give the chunk length, the number of segments, and the kind of data window.

PAGE 157

The estimation of the frequenciesis done for several segments separately and
averaged afterwards. The length of such a segment is called chunk length. The
chunk length, which is aso the longest period which can be resolved, should be
chosen smaller than the total length of i fi 1 e to get statistical certainty by the use

of several segments.

It isthe task of the user to find a sensible balance between the number N of seg-
ments and the chunk length L. It is sensible to use overlapping segments. If an
integer value for the number of segments is suggested by this function and this
value is chosen (which should be done), then the segments are overlapping by

50%. If n isthetotal length of i ti 1 e, then the function suggests
2n

N=—-1
L

Be warned: If only one segment is chosen, the variance of the frequency estima-
tor isequal to the mean itself! Thisvarianceis reduced approximately by afactor
of (9/11) N if the segments are overlapping by 50%.

If there is no overlapping then the variance reduces nearly by the same factor
(namely N), but the maximal resolvable period length is shorter. Thiswould be a
vast of information. If there istoo much overlapping then the statistically
dependence between the frequency estimators of the different segmentsistoo
large. In the extreme case of 100% overlapping the variance is not reduced any

morel

If L isapower of 2 then for the internal fourier transformation the algorithm for

the fast fourier transformation is used.

There are 4 built in data windows. Why a data window? The base of the fre-
guency estimation is afourier transformation. But afourier transformation
“thinks’ that the data are periodically, this means that the last record of ifileis
“thought” to be followed by thefirst record of i fi 1 e. If the data are periodical,
thisis correct and no window should be used, but if the data are not periodical,
the fourier transformation “ concentrates’ too much on the sharp jump from the

last record to the first one. To avoid this the data should be windowed. There are

PAGE 158

3 often used window functions, but the influence of the used window to the result

should not be too strong. The Hann window is a often used one.

The window functions are:

Window Window function
No w(k) = 1fok=0,...,L-1.
Hann _ 2m(k+1) _
w (k) = 1--cos L1 fook =0,...,L—-1.
Bartlett L
w(k) = w(L-1-Kk) :kfmk::QHWE—l.
Welch (k+1) —05(L+1)72 _
1—[S5 L) } fork=0,.. L-1.

The record number t of ofi I e iSthe estimation of the power spectrum density of
frequencies around (t—1) /L cycles per time step, which corresponds to a
periodof L/ (t—1) .

If awindow isused i il e should be detrended, because not the power at exact
one frequency is estimated, but aweighted average of the powers of the fre-
guency and some “frequency bins’ around it. Thusif the original data have abig
mean (frequency 0), then the second record of of i 1 e iSvery strongly influenced

by this mean. The input data can be detrended by the user or by this function.

The spectrum is normalized in away that the integral of the power spectrum den-
sity over all frequenciesisround about the sum of the squares of the original data
(after subtracting the mean resp. after detrending). If the data were detrended or

at least the mean was subtracted, then this sum of squares is the sample variance.

For even L thisintegral over all frequenciesis defined as

1/2 1 1L/2—1 1
I spectrum (k, x) dk = ZO(O’ X) +[kzl o (k, x) +ZO(L/2, X)
O =

and for odd L it isdefined as

1/2 1 1(L—1)/2
Ispectrum(k, x) dk = ZO(O’ X) +[kzl 0 (k, x)
O =

PAGE 159

Try

ext longinfo -spectrum -randommor mal , 10000, 6

to convince yourself. The function r andommor mal (page 52) produces a white spec-

trum, so due to the normalization the spectrum has the constant value 2.

If the detrended input data are denoted by X, ..., X, _; and the window function
is denoted by w, ..., w, _; andisnormalized to th‘lwt = 1, then afourier

transformation

L-1

- €21 kt
C, = z W, X, €
t=0

isdoneforal k = O, ...,L—1 and the power spectrum density psd (k) at fre-
guency k is estimated as

2cd® if k=0

[

psd(k) = e ®+|c,_J° if k>10k<L/2

(]|

2c 0 if k=L/2

Thustheintegral of the power spectrum density is ZIL:_ éwtxt , which is approxi-

1eL-1
mately equal to L Zt:OXt'

To visualize a spectra using the plotting software xvgr, one can type

ext output spectrumext > y.asc

ext output -divc, <segment_length> -for, 0, <hal f_segment_| ength>1 > x. asc
paste Xx.asc y.asc > X_y.asc

Xvgr X_y.asc

(Seefunctions out put (page 46), di ve (page 75) and for (page 51) and Section 3.2
“Combining different functions’ on page 19 for details.) If alogarithmic x-axisis
desired, before calling xvgr thefirst line of thex_y. asc must be deleted, because it
contains 0 as x-values. Chose menu vi ew - Graph - Set graph type t0 chose loga-
rithmic x-axis and menu vi ew - Ticks/tick |abels -

Speci al ticks-tick |abel tOwrite period lengthsinstead of frequencies at the x-

axis.

PAGE 160

More information can be found in [2].

4.23 Interpolation

ti meinterpolate
ifile ofile

(“timeinterpolate”) This function perform alinear interpolation between the dif-
ferent records. The user hasto typein the number n of time steps from one

record to the next. For t' witht' = 0, ...,n itis

o(nt—t'+1,x) = %i (t,x) + El—tﬁgi (t+1,%)

i nterpol ate
ifile ofile

(“interpolate”) This function, which interpolates fields from one longitude/lati-
tude grid to another, needs probably a description of the input grid and in any
case a description of the output grid. To avoid typing the whole descriptions of
the grids the user should use grib description files asin Section 3.6 “Grid
description files’ on page 24.

Ififile hasSIMPLE, EXTRA, or SERVICE format, then both descriptions must
be given, that of the input grid and that of the output grid. If ifi1e hasLOLA or
GRIB format, then only the description of the output grid must be given, since

theinput grid isknown. It isagood ideato choose LOLA as output format.

First example: To interpolate the EXTRA fileifile. ext fromaT21 grid to areg-
ular grid with 72 longitude and 36 latitudes, just type

cat $GRIDS/t21.grid.asc $GRIDS/r72x36.grid.asc | lola interpolate ifile.ext \
ofile.lola

The environment variable ari bs should be set as described in Section 3.6 “ Grid
description files’ on page 24.

PAGE 161

Second example: To interpolate the GRIB fileitiie. grb to the same output grid,

just type

lola interpolate ifile.grb ofile.lola < $GRI DS/ r72x36.grid. asc

If only abox of ofi I e is needed, construct a grid description file of this box by
using the functions gri ddesi ndexboxo (page 164), gri ddesi ndexbox1 (page 164),

gri ddesl onl at boxo (page 165), Or gri ddes! onl at box1 (page 165).

The basis of the interpolation is an underlying continuous field which is con-
structed in the following way: For two neighboured longitudes x, and x, and
two neighboured latitudes y, and y,, of the input grid every point at longitude x

and latitude y with x;, <x<Xx, andy, <y<y, isassigned the vaue

X—X y—y
a=ay+t (alz_all) X—Z_Xll + (822_3-11) yz_yll (1)

(x=x) (Y-Yy)

+ (ay—a;,—ay +ay) (X —X%,) (Yo—Yy)

where a, j isthe value at longitude x; and latitude Y- If one of the four values
ay1, Ay, 35, 8y, ISthemissing value, then a is also the missing value. This
means. Interpolation is done only between input grid points, there is never done

some kind of extrapolation.

The value at a specia output grid point is now computed as a weighted mean of
this underlying continuous field over an area which is bounded by lineslying
exactly between this grid point and the neighboured ones. In the following figure
the black circlesrepresent output grid points and the square shows the areawhich
isused for computing the area weighted mean to determine the value of the out-

put grid point in the middle.

The special cases of output grid points lying at the edge of the output grid is
treated the same as discussed in the explanation of function wei ght o (page 49).

PAGE 162

Parts of the area at which the underlying continuous field has the missing value
are treated as not belonging to the area with the side effect of a probably reduced

areasize.

A field islosing contrast while interpolating, or more precise, the field is con-
verging to a constant field if interpolation is done infinitely often. This can very
easily be seen for the special case of an output grid which isidentical to the input
grid. Thereason for losing contrast is as follows: The values at the output grid
points are area weighted means of the underlying continuousfield, but the values

at the input grid points are not.

To get acontrast preserving interpolation one has to use another underlying con-
tinuous field: It must be determined by the condition that for every input grid
point the mean of thisfield over the area around this point must be the value of
the input field at this point.

To use such an underlying continuous field call function cont rast (page 164)
before the interpolation. Function cont rast changes the input field to anew field
in away, that the continuous field which is constructed from the new field using

equation (1) isthe desired underlying continuous field.

Thisimpliesthat if acoarse grid isinterpolated contrast preserving to afine grid
and is afterwards interpolated back contrast preserving to the original grid, the
field should be nearly unchanged. For the specia case of an output grid which is
equal to theinput grid the contrast preserving interpolation let the field
unchanged.

Why isfunction cont rast not part of the function interpolate? There are two rea-
sons: Firstly auser does probably not wish that kind of contrast preserving and
secondly on amulti processor machine it is now possible to parallelize the com-

putation.

Summarized: If function contrast isnot used then theinterpolation islosing

contrast and if it isused, then the interpolation is contrast preserving.

PAGE 163

contrast
ifile ofile

(“contrast”) This function is thought to be used before calling the functionii nt er -
pol at e (page 161) to raise the “contrast” of the input field to make a contrast pre-

serving interpolation. For reason see the explanation of functioni nterpol ate.

For example type

cat $CRIDS/t21.grid.asc $CRIDS/r72x36.grid.asc | lola interpolate -contrast \
ifile.ext ofile.lola

or

lola interpolate -contrast ifile.grb ofile.lola < $GRI DS/ r72x36.grid. asc

If thefield of ofi 1 e isinterpolated by function i nt er pol at e to the same grid, then
the interpolated field is unchanged. Try

lola griddes ifile.lola | lola interpolate -contrast ifile.lola ofile.lola
lola info -sub ifile.lola ofile.lola

to convince yourself!

gri ddesi ndexbox0

(“grid description of index box”) This function can be used to construct agrid

description file of a box.
For example:

cat $GRIDS/r72x36.grid.asc - | lola griddesi ndexbox0O > box.grid. asc

(Presscontrol - at end of standard input.)

gri ddesi ndexbox1
ifile

(“grid description of index box™”) This function can be used to construct agrid

description file of a box.

PAGE 164

For example:

| ol a griddesi ndexbox1l any_file_with_correct_grid.lola > box.grid.asc

gri ddesl onl at box0

(“grid description of longitude/latitude box™) This function can be used to con-

struct agrid description file of a box.
For example:

cat $GRIDS/r72x36.grid.asc - | lola griddeslonlatbox0 > box.grid.asc

(Presscontrol -p at end of standard input.)

gri ddesl onl at box1
ifile
(“grid description of longitude/latitude box”) This function can be used to con-

struct agrid description file of a box.

For example:

lola griddeslonlatboxl any file_with_correct_grid.lola > box.grid.asc

4.24 Classes

cl asses
ifile ofilel ofile2

(“classes’) Thisfunction isfor counting and for averaging data which liein user
given quantity classes. For every user given time period inofi 1 e1 is stored for
every user given quantity class the mean of all valueswhich liein this classes

and in ofi 1 e2 the number of values which liein this class.

(See Section 3.4 “Not required output files” on page 22 if only one of the both

output files are required.)

At first the user hasto give the number of quantity classes.

PAGE 165

Then he hasto give afactor b and asummand a which can be used for trans-
forming the input data to more common units. If for exampleinitiie tempera-
turesin Kelvin are stored, but the quantity classes should be given in degree
Celsius, thenagood choiceisb = 1 anda = —273.15. If inifi1e precipitations
in meter per second are stored, but the quantity classes should be given in milli-
metre per day, then agood choiceis b = 8.64e7 and a = 0. If no transforma-

tion on the input data should be donetheuser mustset b = 1 anda = 0.

After giving b and a the user hasto give for al classes alevel number and the
lower and the upper boundary of thisclass. A value y fallsin aquantity classes

with lower boundary ¢, and upper boundary c, if and only if

Ccposa+byla+by<c,

At the end the user hasto give the length of the time periods which should be

considered separately. The length O means to consider all records together.

This computations are done independent for every field element.

dur ati ons
ifilel ifile2 ifile3 ofilel ofile2 ofile3

(“durations of events’) This function isfor analysing the durations of events
which are defined by avalue lying in a user given range. For example dry spells
could be defined by precipitation less than 0.1 mm/day for more than a given
number of days. Heat periods could be defined by a maximum temperature of

more than 30°C for aat least a given number of days.

This function is doing the computations separately for every user given time

period and independent for every field el ement.

Every event belongs to an event spell, which is defined by the maximal interval
around this event which consists only of other events. For example every dry day

belongsto adry spell (which naturally could have alength of 1).

For analysing the durations of these event spells the user can define several event

spell duration classes. An event belongs to such an event spell duration class if

PAGE 166

the event spell around it has a length greater than or equal to aminimal and less
than of equal to a maximal number of records. A record which is not an event

belongs to no event spell duration class.

Thisfunction storesinofi 1 e1 for every event spell duration class the relative
amount of records belonging to thisclass. In ofi 1 e1 the user can find the numbers
for statements like: “40% of all days are belonging to adry spell longer than one

month”.

It storesin ofi 1 e2 fOr every event spell duration class the number of the occur-
rences of this event spell duration class. Here the user can find the values for
statements like: “Every year there are at average 3.4 dry spells with alength of
more than one month”. An event spell which overlap the time period which is
considered separately isonly counted relatively. If for example only 3 records of
an event spell of the total length of 12 records are lying in the considered time

interval, these event spell is counted only as 0.25.

And last not least this function storesin of i 1 e3 the average waiting time for the
next record which is not an event. These numbers can be used for statements like
“The average waiting time for the next precipitation on arandomly chosen day is
5.2 days’. The more exact formulation is: For every record in the considered
time period which is not an event it is added 0 and for every onewhichisan
event it is added the number of records to the next record which is not an event,
even if thisoneislying outside the time period. This sum isthen divided by the

length of the considered time period and stored inof i 1 e3.

(See Section 3.4 “Not required output files” on page 22 if not all of the output
filesare required.)

Theinput fileitiie1 isscanned for the values.

Because an event spell could have begun before the first record and could go on
behind the last one, there must be additional information about the beginning of
the first and the ending of the last event spell. These information must be givenin

ifilecandifiles.

Fromifite2 anditiles only thefirst recordsare used. That of i fi 1 e2 must give

the number of records an event spell has occurred already before the first record

PAGE 167

of itile1 andthat of i fi1e3 must give the number of records an event spell is still
going on after the last record of i fi1e1. Only theinteger parts of the field ele-

mentsof ifitez andifile3 are used.

The exact useisasfollows: If the value of thefirst record of ifile1 iSan event,
then (the integer part of) the number of i fi1e2 isadded to the length of the event
spell which thisfirst record belongs to. And if the value of the last record of
ifilel iSan event, then (the integer part of) the number of i fie3 isadded to the

length of the event spell which this last record belongs to.

Normally the values needed for i fi1e2 andi i e3 are unknown, because there are
no data before and after the used time period. So amore or less redlistic estima-

tion must be used. For getting such estimations see function dur at i onso
(page 169).

Use-null instead of ifitez anditiles if all the numbers should be 0. (See
description of function nu1 (page 50).)

After calling the function the user hasto give afactor b and asummand a which
can be used for transforming the input datato more common units. If for example
inifile1 temperaturesin Kelvin are stored, but the quantity classes should be
given in degree Celsius, then agood choiceisb = 1 and a = —273.15. If in
ifile precipitationsin meter per second are stored, but the quantity classes

should be given in millimetre per day, then agood choiceis b = 8.64e7 and

a
b

0. If no transformation on the input data should be done the user must set
landa = 0.

Then the user hasto give alower boundary ¢, and an upper boundary c, to
define an event. If for example dry spells are considered, the lower boundary
could be O of less and the upper one could be 1 millimetre per day. If extreme
heat events are investigated, the lower boundary could be 30 degree Celsius and
the upper one could be 100 degree Celsius.

A vauey isaneventif and only if

cposat+byla+by<c,

PAGE 168

Afterwards the user has to give the code numbers which should be used while

writing ofi 1 e1, of i 1 e2, aNd of i | e3.

Several duration classes could be analysed simultaneously by this function.

Therefore the number of duration classes must be given now.

Then for every event spell duration class alevel number (which isonly used for
writing the headers) and the minimal and the maximal length must be given. (A

maximal length of O means no upper limit.)

At the end the user hasto give the length of the time periods which should be

considered separately. The length O means to consider all records together.

Thisfunction is creating atemporary file which is normally removed at the end.
But there are some cases in which this function has no chance to remove thisfile,
the most common isthekilling of the process by the unix commandki i1 -9. SOif
thisjob should be killed, it should be done without the option - 9. If this temporar-
ily fileis not removed, the user should do it by hand. Therefore the name of this

fileis printed to standard error.

The size of thisfileis approximately 2 times the number of recordsof i i1 e1 mul-

tiplied by the number of field elements per record.

Sointhecaseof avery bigitile1 the user hasto take care of the directory where
thisfileiscreated. Thisdirectory isstveol rif such an environment variable exists
and its containsisreally adirectory. Otherwiseit is/tnp.

durati onsO

ifile ofilel ofile2

(“durations of events preparation”) Before reading the explanations to this func-

tions read that of function durati ons (page 166) first, please.
This function is doing the computations independent for every field element.

The estimation of the values for input fileifi1e2 andifiles of function durati ons

can be done by thinking the datafileifiie1 ascyclic. Naturally thisis only sensi-

PAGE 169

bleif the date which would follow the date of thelast record of i fi 1 e1 iSthe same
date than that of the first record of i file1.

If the value of thefirst record of ifi1e1 isnot an event a0 iswritten into ofi 1 e1,
otherwise the length (in records) of the event spell around it iswrittenintoofi 1 e1.
If the value of thelast record of ifi1e1 isnot an event a0 iswritten into ofi | e2,

otherwise the length (in records) of the event spell around it iswritten into of i | e2.

The typically combination of thisfunction together with function dur ati ons could

be as follows;

ext durationsO ifile first.ext last.ext < durations.in
ext durations ifile last.ext first.ext ofilel ofile2 ofile3 < durations.in

PAGE 170

5. References

[1]

[2]

[3]

[4]

[5]

WMO-Nr. 306 Manual on Codes, Volume 1, International Codes, Part B - Binary
Codes.

PressW. H., Saul A. Teukolsky, W. T, Vetterling, B. P. Flannery, 1992, Numerical
Recipesin C, Cambridge University Press, ISBN 0-521-43108-5.

R.W.Preisendorfer, 1988: “Principa Component Analysis in Meteorology and
Oceanography”, Developments in Atmospheric Science,17.

T.PBudl, 1971: “Integra Equation Representation for Factor Analysis’,
J.Atmos.Science,28,1502-1505.

Lehmann, E.L., 1986, Testing Statistical Hypothesis, 2nd ed., John Wiley &
Sons, New York, Chichester, Brisbane, Toronto, Singapore, ISBN
0-471-84083-1.

PAGE 171

6. List of Functions

Information 38 Converting the
shortinfo 38 format 48
info 38 48
longinfo 39 copy2 48
formatinfo 39 copy
pipeinfo 39
pipeshortinfo 39 Generation of files 49
gribinfo 40 .
griddes 40 weight0 49
grads 40 weightl 50
nrec 40 null 50
nyear 41 const 50
nmon 41 consts 50
ndate 41 pi 51
ntime 41 e 51
ncode 41 for 51
nleve 42 random 52
showyear 42 randomnormal 52
showmon 42
Showdate 42 M anipulating the
showcode 43 header 52
showlevel 43 chdate 52
ggﬂ:;gr 424 chtime 52
Satus 44 chyear 53
chmon 53
chday 53
Formatted input and chcode 53
chcodes 53
output 44 chlevel 53
input 44 chdispol 54
inputsmp 44 chdispo2 54
inputext 45
inputsrv - 45

nputiola 45 Manipulating the
output 46 field 54

outputint 46 chsize 54

outputsmp 46 maskindexbox 55

Ou:pU:eXt jg masklonlatbox 55
outputsrv normalize 56

outputlola 47 shiftleft 56

shiftright 56
swapleftright 56
swaprightleft 56

PAGE 172

swaptopbottom 57 Missing values 68
swapbottomtop 57 .
break 57 setctomiss 68
break<n> 57 setmiss 68
melt 57 setmissc 68
meltall 58 setnotmiss 69
melt<n> 58 setnotmissc 69
enlarge 58 countmiss 69
thinout 58 countmissr_ 69
thinoutr 58 countnotmiss 69
countnotmissr 70
packr 70
Manipulating the se- unpackr 70
guence of records 59 _ _
reverse 59 Sorting and ranking 71
reverser 59 sort 71
transpose 59 sortr 71
transposer 60 rank 71
split<n> 60 rankr 71
merge<n> 60
mergedate?2 61 . .
replgce 61 Arithmetic 72
cai<n> 61 sum 72
sum<n> 72
: sumr 72
Selection 62 dd 72
sel 62 addc 72
selrec 62 addcc 73
selfirstrec 62 sub 73
selfirstmidlastrec 63 subc 73
seldate 63 subfromc 73
selfirstdate 63 subcc 73
sdfirsttime 63 subfromecec 74
selyear 64 minus 74
selmon 64 mul 74
selseas 64 mulc 74
selday 64 mulcc 74
selcode 64 div 75
selfirstcode 65 divc 75
selcode<n> 65 divcc 75
sellevel 65 inverse 75
seldispol 65 mod 75
seldispo2 66 modc 76
selindexbox 66 power 76
sellonlatbox 67

safile<m>of<n> 67

sdfile<|>and<m>of<n> 67
salfile<k>and<|>and<m>of<n> 68

PAGE 173

Maximum and
Minimum 76

max 76
max<n> 77
maxr 77
maxabsdiffr 77
yearmaxs 77
monmaxs 78
daymaxs 78
min 78
min<n> 78
minr 79
yearmins 79
monmins 79
daymins 79

M athematical

functions 80

sign 80

exp 80

log 80

logl0 80

sn 81

cos 81

tan 81

asin 81

acos 81

atan 82

atan2 82

conj 82

re 82

im 82

arg 83
retocomplex 83
imtocomplex 83
recttocomplex 83
complextorect 83
poltocomplex 84
complextopol 84

Comparisons and
Logic 84
eq 84

eqc 84
neq 85

nec 85
le 85

lec 86
It 86

ltc 86
ge 86
gec 87
gt 87

gtc 87
and 88
or 88
not 89

Conditions 89

ifthen 89
ifthenc 90
ifnotthen 90
ifnotthenc 90
ifthenelse 90
ifthenelsec 91
ifthencelse 91
ifthencelsec 91

Geometry 91

dotprod 91
dotprodr 92
dotprodrw 92
norm 92

normr 93
normrw 93

dist 93

distr 93

distrw 94

rms 94

rmsr 94

rmsrw 94
normdotprod 94
normdotprodr 95
normdotprodrw 95

Means and averages 96

mean 96
avg 97
mean<n> 97
avg<n> 97
meanr 97
meanrw 97

PAGE 174

avgr 98

avgrw 98
anom 99
anomr 99
anomrw 99
zonmean 100
zonavg 100
mermean 100
meravg 100
runmeans 100
runavgs 100
daymeans 101
dayavgs 101
5daymeans 101
5dayavgs 101
10daymeans 102
10dayavgs 102
monmean 102
monavg 103
monmeans 103
monavgs 103
seasmean 103
seasavg 104
seasmeans 104
rseasmeans 104
cseasmeans 105
crseasmeans 105
rcseasmeans 106
seasavgs 106
rseasavgs 107
cseasavgs 107
crseasavgs 108
rcseasavgs 108
yearmean 109
yearavg 109
yearmeans 109
yearavgs 109

Variances, correlations,

and co. 109

var0 110

varl 111

varOr 111
varOrw 111
varlr 112
varlrw 112
pooledvar<n> 112
stddevO 113

stddevl 113
stddevOr 113
stddevOrw 113
stddevlr 114
stddevirw 114
2stddevO 114
2stddevl 115
2stddevOr 115
2stddevOrw 115
2stddevlr 116
2stddevirw 116
covar0 116
covarl 117
covarOr 117
covarOrw 117
covarlr 118
covarlrw 118
cor 118

corr 119
corrw 119

Regression 120
regres 120

detrend 120

trend 121

subtrend 121
anomcoupl 122
anomcouplr 122
anomcouplrw 122

Tests, confidence inter -

vals, and co. 123

studentt 126
studenttinv 126
chisquare 126
chisquareinv 126
beta 127

betainv 127
meanstatist<n> 128
meansignif<n> 128
meanltest<n> 129
mean2test<n> 130
meanconfid<n> 130
meanstatist 131
meansignif 131
meanltest 132
mean2test 132

PAGE 175

meanconfid 132 Fourier and spectra 157
meandiffstatist 133

meandiffsignif 133 fourier 157
meandiffitest 133 spectrum 157
meandiff2test 134

meandiffconfid 134 ;
meandiffdiffstatist 134 I_nt_er polatlon 161
meandiffdiffsignif 135 _tlmemterpolate 161
meandiffdiffitest 135 interpolate 161
meandiffdiff2test 135 contrast 164
meandiffdiffconfid 136 griddesindexbox0 164
pooledvarstatist<n> 136 griddesindexbox1 164
pooledvarsignif<n> 137 griddeslonlatbox0 165
pooledvaritest<n> 137 griddeslonlatbox1 165
pooledvar2test<n> 138

pooledvarconfid<n> 139

varstatist 140 Classes 165
varsignif 140 classes 165

varltest 140 durations 166
var2test 141 durations0 169

varconfid 141
varquotstatist 141
varquotsignif 142
varquotltest 142
varquot2test 143
varquotconfid 144
regresstatist 145
regressions 145
regresltest 146
regres2test 147
regresconfid 147
corstatist 148
corsignif 149
corltest 149
cor2test 150
corconfid 151

Empirical Orthogonal

Functions 152

eof 152

eofw 154
eofspatial 155
eofspatialw 155
eoftime 155
eoftimew 156

PAGE 176

PAGE 177

7. Index of Functions

Numerics

10dayavgs 102
10daymeans 102
2stddevO 114
2stddevOr 115
2stddevOwr 115
2stddevl 115
2stddevlr 116
2stddevlrw 115, 116
5dayavgs o1
5daymeans 101

A

acoss1
add 72

addc 72

addcc 73

and ss

anom 99
anomcoupl 122
anomcouplr 122
anomcouplrw 122
anomr 99
anomrw 99

args3

asinsi

atan 82

atan2 g2

avg 97

avg<n>97

avgr g8

avgrw 98

B

beta 127
betainv 127
break 57
break<n> 57

C

cat<n>s61
chcodes3
chdate 52
chday 53
chdispol 54

chdispo2 54
chisquare 126
chisquareinv 126
chmon 53
chsizesa
chtimes2
chyear 53
classes 165
complextopol 84
complextorect 83
conj 82

const 50

CONSts 50
contrast 164
copy 48

copy2 48

Ccor 118

corltest 149
cor2test 150
corconfid 151
COrr 119

COrrw 119
corsignif 149
corstatist 148
cos81

count 44

countc 43
countcr 44
countmiss 69
countmissr 69
countnotmiss 69
countnotmissr 70
covarO 116
covarOr 117
covarOrw 117
covarl 117
covarlr 118
covarlrw 118
crseasavgs 108
crseasmeans 105
cseasav(gs 107
CSeasmeans 105

D

datemerge2 61
dayavgsio1
daymaxs7s
daymeans 101

PAGE 178

daymins79
detrend 120
dist 93

distr 93
distrw 94
div7s

divc7s

divec 75
dotprod 91
dotprodr 92
dotprodrw 92
durations 166
durationsD 169

E

es1
enlargess

eof 152
eofgpatial 155
eof spatialw 155
eoftime 155
eoftimew 156
eofw 154

€q 84

eqcs4

exp 80

F

fors1
formatinfo 39
fourier 157

G

gese6

gecs7

grads 4o

gribinfo 4o

griddes4o
griddesindexbox0 164
griddesindexbox1 164
griddeslonlatboxO 165
griddeslonlatbox1 165
gts7

gtcs7

ifnotthen 9o
ifnotthenc 90
ifthen a9

ifthenc 90
ifthencelse o1
ifthencelsec 91
ifthenelse 90
ifthenelsec o1
ims2
imtocomplex 83
info 38

input 44
inputext 45
inputsmp 44
INputsrv 45
interpolate 161
interpolatem 165
inverse7s

L

less

lec 8s

log 8o
log1080
longinfo 39
Itse

Itcse

M

maskbox 55
maskindexbox 55
masklonlatbox 55
max 76

max<n> 77

maxr 77

mean 96

mean<n> 97
meanltest 132
meanltest<n> 129
mean2test 132
mean2test<n> 130
meanconfid 132
meanconfid<n> 130
meandiffltest 133
meandiff2test 134
meandiffconfid 134
meandiffdiff1test 135
meandiffdiff2test 135
meandiffdiffconfid 136
meandiffdiffsignif 135
meandiffdiffstatist 134
meandiffsignif 133
meandiffstatist 133
meanr 97

meanrw 97

PAGE 179

meansignif 131

meansignif<n> 128

meanstatist 131

meanstatist<n> 128

meanwr 91
melt 57
melt<n> 58
meltall 58
meravg 100
merge<n> 60
mermean 100
min7s
min<n> 78
minr 79
minus 74
mod 75

modc 76
monavg 103
monavgs 103
MmonNMaxs 78
monmean 102
monmeans 103
monmins 79
mul 74

mulc 74
mulcc 74

N

ncode 41

ndate 41

nec 85

neq 8s

nlevel 42

nmon 41

norm 92
normalizese, 84
normdotprod 94

normdotprodr 95
normdotprodrw 95

normr 93
normrw 93
not 89
Nrec 40
ntime 41
null 50
nyear 41

O

or 88

output 46
outputext 46
outputint 46

outputintasc 46
outputlolas7
outputsmp 46
outputsrv 47

P

packr 70

pi 51

pipeinfo 39
pipeshortinfo 39
poltocomplex 84
pooledvar<n> 112
pooledvarltest<n> 137
pool edvar2test<n> 138
pool edvarconfid<n> 139
pooledvarsignif<n> 137
pooledvarstatist<n> 136
power 76

R

random 52
randomnormal 52
rank 71

rankr 71
rcseasavgs 108
rcseasmeans 106
res2
recttocomplex 83
regres2test 147
regressignif 145
replace 61
retocomplex 83
reverser 59
rmso4

rmsr 94

rmsrw 94
rseasavgs 107
rseasmeans 104
runavgs 100
runmeans 100

S

seasav(104
Seasavgs 106
seasmean 103
Seasmeans 104
sel 62

selcode 64
seldispol 65
seldispo2 66

PAGE 180

salfile<k>and<|>and<m>of<n> 68 V
salfile<|>and<m>of<n> 67

selfile<m>of<n> 67 var0 110
selfirstcode 65 varOr 111
selfirstdate 63 varOrw 111
selfirsttime63 varlin
selindexbox 66 varlr 112
sellonlatbox 67 varlrw 112
shortinfo 38 varltest 140
showcode 43 var2test 141
showdate 42 varconfid 141
showlevel 43 varquotltest 142
showmon 42 varquot2test 143
showtime 43 varquotconfid 144
showyear 42 varquotsignif 142
sign 8o varquotstatist 141
sinsi varsignif 140
sort 49, 71 varstatistic 140
sortr 59, 71

spectrum 157 W

split<n> 60 _

stddev0 113 wel ght0 49
stddevOr 113 weightss0
stddevOrw 113

stddev1 113 Y

stddev1r 114

stddevlrw 114 yearavg 109
studentt 126 yearavgs 109
studenttinv 126 yearmaxs 77
sub7s yearmean 109
subc 73 yearmeans 109
subcc 73 yearmins 79
subfromc 73

subfromcc 74

subtrend 121 Z

sum72 Zonavg 100
SUm<ne72 Zonmean 100
sumr 72

T

tansi

thinout 58

thinoutr 58

timeinterpol ate 161

transposer 60

trend 121

U

unpackr 70

PAGE 181

