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Exploring Variability within Ensembles of
Decadal Climate Predictions

Christopher P. Kappe, Michael Böttinger, and Heike Leitte,

Abstract—Ensemble simulations are used in climate research to account for natural variability. For medium-term decadal predictions,
each simulation run is initialized with real observations from a different day resulting in a set of possible climatic futures. Understanding
the variability and the predictive power in this wealth of data is still a challenging task. In this paper, we introduce a visual analytics
system to explore variability within ensembles of decadal climate predictions. We propose a new interactive visualization technique
(clustering timeline) based on the Sankey diagram, which conveys a concise summary of data similarity and its changes over time. We
augment the system with two additional visualizations, filled contour maps and heatmaps, to provide analysts with additional information
relating the new diagram to raw data and automatic clustering results. The usefulness of the technique is demonstrated by case studies
and user interviews.

Index Terms—Clustering, ensemble simulations, climate research, visual analysis.
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1 INTRODUCTION

C LIMATE simulations with coupled atmosphere-ocean
models have been carried out for many years in order

to estimate possible future climate changes due to increasing
atmospheric greenhouse gas concentrations. In contrast to
weather forecasting, where models need to be initialized
with actual observations, multi-century climate simulations
with coupled models are dominated by boundary conditions
and do not require precise initialization data. Recent research
tries to close the gap between deterministic weather forecasts
and probabilistic climate projections by initializing ocean
models with ocean reanalysis data and employing ensemble
simulation techniques. The goal is a “seamless prediction”
on varying temporal scales. For the time scale of up to
ten years, so-called decadal climate prediction systems are
developed that aim at forecasts of variations in temperature
and precipitation. Both factors have a large impact on societal
systems (droughts, floods).

Two key quantities in these ensemble simulations are
ensemble spread and statistical skill. The ensemble spread
is a potential measure for the internal variability of the
climate system. The statistical skill of a forecast system is
estimated by comparing retrospective forecasts (so called
hindcasts) with observations. Conventional analyses mainly
focus on spatial representations of temporal means [1] as well
as temporal developments of spatial means [2]; analyzing
different forecasts together with different spreads for various
forecast periods is difficult. There is a lack of tools that allow
a compromise between displaying every single ensemble
member in full detail and summarizing a whole ensemble
just by its mean and maybe the standard deviation.
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To address these challenges, we present an interactive
visual analytics system that supports climate scientists in
better structuring and understanding the large amount of
data contained in spatio-temporal ensemble simulations. Our
system, which is the result of joint work of computer scien-
tists and climatologists, enables identifying major patterns in
their data using clustering. We also provide a variety of tools
to verify clustering results. Afterwards analysts can visually
explore the temporal evolution of pattern sizes and their
variability. To this end, the system offers three linked views: a
clustering timeline, a heatmap view and filled contour maps.
The clustering timeline is inspired by Sankey diagrams [3],
[4] and depicts the temporal evolution of the clustering.
The heatmap view helps analysts validate the clustering
results as it visualizes all the pair-wise distances between
ensemble members, and the filled contour maps link the
analysis results back to the simulated/observed data.

Our contributions are described as follows:
• design principles for analyzing variability in decadal

climate simulations;
• an interactive visualization system to enable analysts to

better understand patterns and variability in ensembles
and to compare ensembles to each other;

• a Sankey-inspired diagram that we call clustering timeline
for communicating clustering results in ensembles.

2 RELATED WORK

In the following we introduce the scientific background of
the application data and discuss related work in ensemble
visualization, clustering of ensemble members, and flow
charts for temporal data.

2.1 Prediction Systems and Climate
Prediction systems in environmental sciences fall into two
major categories. Weather forecasts are regularly produced
for up to ten days. They are based on most recent observa-
tions, data assimilation techniques and ensemble simulations
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with atmospheric models. Specifically for short time scales,
these prediction systems achieve high forecast skills. Typical
uninitialized climate simulations using coupled models of
the Earth system span longer time periods of up to hundreds
or thousands of years, and due to the internal variability of
the climate system, only statistical descriptions of the data
for longer time periods such as 20 or 30 years can be used
for analyses.

By developing a decadal climate prediction system, the
German national research project MiKlip aims to fill this
zone of lacking predictability. A decadal prediction system
simulates not only the climate response to future natural
and anthropogenic forcing but also the future evolution of
internal climate variability. The most common visualization
techniques for the analyses are color-mapping of scalar
measurements on the respective domain and time series [5].
These techniques are also broadly used in communication
with the public (like on websites) [6], [7].

Recent research has addressed visualization of the data
combining color-mapping of the ensemble-mean temperature
anomaly with a visualization of the corresponding per-vertex
standard deviation and the predictive skill in the spirit of
multi-field visualization [8]. In contrast to the latter method,
which for each point in time visualizes statistical quantities
describing the ensemble together with the forecast field,
we aim here at a more detailed analysis of the full spatio-
temporal ensemble data set.

2.2 Ensemble Visualization for Spatial Data

Several techniques have been proposed to visualize (time-
dependent) field ensembles. Liu et al. present a comparative
visualization of vector field ensembles looking at common
paths of trajectories [9]. Shu et al. analyze the variability in
scalar field ensembles. High-variance regions are extracted
and tracked over time. Their connectivity is shown in an
EnsembleGraph [10]. Bensema et al. use statistical analysis
of ensembles of fields to classify the modality classes and
integrate these findings in color-coded representations [11].
Demir et al. combine volume visualization and informa-
tion visualization of derived quantities to compare 3D
ensembles [12]. A common approach is also to look into
distributions of contours in ensembles as discussed in [13].
These papers, however, lack a visualization of the temporal
development of clusters of ensemble members such as the
one we propose.

Another noteworthy tool dedicated to the visualization
of ensembles or general probabilistic forecasts is Albero [14];
here, clustering is not so much the concern but it is an
aid in the visual analysis of the uncertainty in Numerical
Weather Prediction Systems and its coordinated multiple
views approach partly draws on the same building block as
our approach (such as colormap visualizations).

2.3 Clustering of Ensemble Members

In the context of ensemble data, clustering can be used to
reduce the data size and complexity by deriving groups of
ensemble members with similar features. Here, the relative
size of these groups represents the probability of occurrence
for these features.

Kothur et al. [15] apply clustering to geographically
referenced temporal profiles to mine for patterns in time and
within the ensemble (while we divide time series into steady
slices for our clustering). Using the presented approach
users can detect temporal profiles representing geophysical
processes and compare two datasets to each other.

Bordoloi et al. employ clustering on spatial probability
density functions. On the one hand, pixels are clustered with
respect to the local uncertainty, on the other hand whole
realizations are clustered [16]; the temporal development,
however, is no concern. Correa et al. perform clustering on
data fraught with uncertainty by taking into account the fact
that – together with the whole dataset – the distance between
individual data points becomes uncertain, which has to be
considered in clustering [17]. Bruckner et al. propose a tool to
cluster ensembles of unsteady visual effects are after merging
several time steps into continuous segments [18]. Recently
Obermaier et al. [19] presented an ensemble exploration
technique that combines a flow chart based on the simulation
parameter space with spatial observations. In spirit, this
system is relatively close to our approach, however, their
notion of trends depends on local features like the scalar
value at a specific position, while we compute clusters based
on overall similarity of the scalar fields.

Ferstl et al. propose an approach to clustering and
visualization of ensemble data [20] similar to ours, with
the focus on meteorological data and under the assumption
that clusters do not merge in the course of time (that we
do not share). Clustering applied to time-dependent flow
data can also be found in [21]; it builds upon Parallel Sets
[22] which relates to cluster visualization insofar as cluster
affiliation can be viewed as a categorical attribute.

Similar to our approach, clustering and visualization of
the underlying dissimilarity matrix is used by Jarema et al.
[23] and Wang et al. [24], where the latter does not show
pairwise distances but the Mean Squared Error (with respect
to observation data) of an ensemble member (column) over
several time steps (rows).

2.4 Flow Charts and Stacked Graphs

Flow charts and stacked graphs combine multiple data
series in a single chart using a parallel layout with or
without intermediate space. Hence, they are closely related
to our problem of visualizing temporally changing cluster
membership. The following papers were influential works
regarding the design of the clustering timeline.

Havre et al. introduced ThemeRiver [25], employing a
river metaphor to stacked graphs to visualize temporal
thematic variations in documents. Streamgraphs [26] present
novel layout strategies that significantly improve the visual
appearance and readability. Dork et al. visualize a continu-
ously updating information stream with interactively stacked
graphs [27]. The TextFlow [28] and ThemeDelta [29] systems
for time-varying document collections are able to extract
and track topics with a model that allows splits and merges,
similar to the time-dependent clustering that we use. In
TextFlow the layout is computed based on a directed acyclic
graph, an approach that we also pursue. And ThemeDelta
uses a visual design that is not so different from our solution
with many individual paths still recognizable in the timeline.
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Waser et al. present the world lines technique which uses
a tree-like flow chart to visualize a multitude of flooding
simulations [30]. Ensemble techniques mentioned before also
make use of flow charts to ease communication [10], [19].

3 SYSTEM DESIGN

In this section, we discuss the visualization challenges
and design rationale of our system. We have roughly
followed Munzner’s Nested Model [31] of domain problem
characterization, data/operation abstraction design, encod-
ing/interaction technique design and algorithm design.

3.1 Analysis Tasks

The presented system was developed in close collaboration
with domain experts. The web-based tool is constantly
available to them with regular updates. Based on our
common meetings and interviews we compiled the following
list of analysis tasks with them. This list formalizes our
mutual understanding and expresses problems within the
application domain and challenges faced by the respective
researchers.

Q.1) Are there dominant patterns in the data? How distinct and
reliable are they? To structure the large-scale simulations,
fundamental patterns have to be found. Many of them
are known to climatologists from experience. The ques-
tion is whether we can extract meaningful patterns
automatically. How can we provide visualization tools
to communicate those patterns and the variability of
matched data points?

Q.2) How can the structure, magnitude and variability of the
discovered patterns be validated and communicated? Climate
simulations contain by nature a lot of natural variance.
How can we make sure that we pick up relevant
patterns? The climatologists also want to be given means
that help them link the new findings to their data in well-
known formats.

Q.3) How persistent are those patterns over time? Do realizations,
which appear to be similar at a point in time, stay in the
same cluster or do they change frequently? The analysts
want to understand the temporal evolution of climatic
patterns. When do they occur and how do they change
over time? It is also important to them to understand
the contribution of the individual simulation runs to the
clusters and their temporal evolution.

Q.4) Can the prediction skill be improved by looking at particular
clusters? The prediction skill is a measure for the success
of predictions. The climatologists are interested in the
question whether the system can help them further
improve the prediction skill.

Q.5) How do multiple ensembles compare to each other? What are
the effects of different initializations? How do different regimes
compare? Prediction systems are commonly evaluated
using many individual simulations (initialization at
many time steps). Climatologists want to understand
how these initializations compare to each other and
how strong the effects are. They also want to compare
multiple initialization models to understand the effect
of the provided model input.

3.2 Analysis Challenges and Design Rationale

As stated earlier, the state-of-the-art in the visual analysis of
decadal climate simulations ranges from 1D and 2D plots to
multi-field scalar field videos. These types of visualizations
are very intuitive and easy to compute.

However, while the current routine provides an easy
measure to estimate the overall quality of a simulation
model, it lacks detailed analysis functionality for spatio-
temporal processes. The analysis of videos with multi-field
visualizations is a very coarse and mentally exhausting
task that provides only rough qualitative insights and may
easily suffer from missing important pieces of information
in the data. In close collaboration with climatologists, we
identify a set of design goals that help analysts get a better
understanding of decadal climate ensemble simulations.

D.1) Variability visualization: We use clustering to identify
major patterns in climate simulation ensembles. In our
system we will provide means to visualize these patterns
and enable the analyst to compare patterns and raw data
to estimate variability in the input. A second source of
variability are the likelihood of climatic phenomena
covered by the distribution of temporal patterns in the
ensemble. The system requires means to communicate
the likelihood and temporal evolution of patterns.

D.2) Storytelling metaphor: As we are working with long
time series in ensembles, a storytelling metaphor is
desired by the analysts to rapidly see and explain
important patterns in the data (Q1-4). The metaphor
shall cover global trends and enable the analyst to
highlight individual members or subgroups to explain
their findings. It shall also allow for extra space to
add annotations such as raw data, derived parameters,
or visualizations of additional analyses. We chose a
Sankey-inspired visualization as the starting point for
the analysis as it has a primary axis for time and clearly
depicts the temporal clustering results. The horizontal
layout allows for easy annotation and can be used
readily as centerpiece for communication.

D.3) User confidence: Climatologists have a thorough under-
standing of mathematics and want to understand the
decisions made in the automated analysis. Clustering is a
critical part in our pipeline and it is important to develop
visualizations that allow the analyst to explore clustering
decisions (Q1-4). Hence, we make the simulation data
accessible to the analyst in a well-known format (filled
contour maps) and we include augmented heatmaps to
inform about clustering decisions and the confidence of
the clustering.

D.4) Interactive pattern unfolding: A critical design ratio-
nale is interactive data exploration enabling the analyst
to interact with the data directly, see results immediately,
and have a linked interface between the different visu-
alization modalities, shedding light on varying aspects
of the data and derived quantities (Q1-5). The system
should provide an overview of how variability changes
within the ensemble over time to identify interesting
patterns (e.g. cluster structure). Starting from here, the
analyst shall be able to gain further insight into patterns
and be provided with means to reason about the causes
of them.
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Figure 1. System overview: Our system features a data processing
part (blue rectangles) and a visualization part (red rounded rectangles).
The clustering timeline provides an overview of temporal similarities
and clustering. The augmented heatmap and filled contour maps help
analysts interpret the clustering results and temporal patterns.

3.3 System Overview
The whole system is implemented as an HTML5 application
that can either be used remotely (client-server mode) or
locally. An analysis session starts with a data processing part,
where the necessary data is obtained (uploaded by the user
or selected from the repository of the server), the distance
matrices and clustering are computed, and the results are
finally passed to the visualization application. The remaining
analysis is interactive. The system consists of three major
views (red rounded rectangles in Figure 1): the clustering
timeline, an augmented heatmap, and filled contour maps.

The clustering timeline provides an overview of temporal
similarities and clustering.

The augmented heatmap and filled contour maps help
analysts interpret the clustering results and temporal patterns
by displaying detailed information about the raw (scalar
field) and computed (scalar field distances, silhouette coeffi-
cients) data for single time steps.

4 CLUSTER ANALYSIS

Data processing is an integral part of the presented system
to provide the analyst with a meaningful structuring of the
huge amount of data. In discussions with the domain experts
we settled on cluster-based analysis to uncover major trends
and variability in the simulations. As climate datasets feature
cyclic as well as irregular patterns on multiple timescales,
we decided on distance-based clustering with each scalar
field being an individual data point to uncover recurring
patterns. To make this more precise, suppose we have an
ensemble simulation with 10 members (simulation runs) and
100 time steps each. This results in 10×100 data points, each
representing a 2D scalar field, that are clustered concurrently.

What remains to be discussed is the choice of distance
function (Section 4.1), the chosen clustering algorithm (Sec-
tion 4.2), and methods for the validation of the clustering
results (Section 4.3).

4.1 Distance Function
The input data to the clustering are scalar fields, and finding
a good distance function (metric) for such high-dimensional
data points is a difficult task. The choice commonly heavily
depends on the application domain, prior knowledge, and
targeted features. On the one hand, choosing a good distance

function is critical to obtain meaningful clustering results,
on the other, the function can easily be changed to account
for novel findings and data-dependent questions. Hence, we
decided to start with a standard choice that is well-accepted
in the application domain. For the results presented in this
paper, we applied a vertex-based distance function for two
fields s1 and s2 using the p1-norm:

d(s1, s2) =
∑
v∈V

ω(v) · |s1(v)− s2(v)|

where V is the (common) set of vertices. The weight factor ω
accounts for the varying cell sizes when using regular grids
based on spherical coordinates (the polar areas are covered
more densely than the equatorial area). Notice that we use
the same distance function for comparison of scalar fields
(e.g. cluster means) with ground truth data (see error charts
in Figure 7). But we normalize the result with the sum of the
weights to gain more meaningful labels, namely a measure in
Kelvin (difference of temperatures in degree Celsius). Similar
results were obtained using related measures such as the l2
metric or the cosine similarity.

4.2 Clustering Algorithm

There are several well-established generic clustering algo-
rithms which can always be taken into consideration.

There are the density-based methods [32] which are
intriguing because they can discover clusters of arbitrary
(non-spherical) shape; the number of clusters need not (but
also cannot) be given by the user. It depends, however, on a
parameter defining the minimum number of points a cluster
must have (could be set to 1) and – more critically – a
minimum distance between points that reflects what “dense”
means for the given dataset. Estimating a good value for
this parameter works best with a high number of points in a
low-dimensional space. Because our application is contrary
to this, we dismissed this clustering approach. However, for
larger ensembles whose members are previously simplified
(e.g. a reduced grid resolution) it may be reconsidered.

There are also hierarchical clustering approaches [33],
[34], [35]. But these are less straight forward to work with
(automatically) because in order to get a classical, non-
hierarchical clustering result as we desire, one first has to
find a cut through the resulting dendrogram. However, we
think hierarchical clustering may eventually be applicable,
too, ideally as a variable, interchangeable step in the analysis
workflow.

Eventually, we chose the k-means algorithm [36] for the
following reasons: (i) the algorithm is easy to understand,
(ii) only the number of clusters k has to be provided (the
most suitable k can be determined automatically, however),
(iii) it directly yields both a clustering and the corresponding
cluster centers which reflect the represented climate states.

The required input parameters for k-means are the
desired number of clusters k and initial positions for the
clusters. Initial data points for the cluster centers are chosen
randomly. To avoid locally optimal solutions, we run k-
means multiple times (on average 40 times) and choose the
clustering with the best silhouette coefficient (see below.)
Unless the user explicitly specifies a desired number of
clusters, we search for a good partitioning of the data by
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Figure 2. (a) Clustering of ensemble members mi split into individual time
steps mi,t. (b) A series of clusterings (constructed from (a)) modeled as
graph. Nodes represent a cluster k at a certain time step t (labels: ck,t),
edges exist for each ensemble member between nodes of consecutive
time steps.

trying multiple settings for k and select the one which yields
the best silhouette coefficient.

4.3 Cluster Quality Analysis
The criterion used to finally pick a k is the silhouette
coefficient [37] of the clustering (or short the silhouette).
This number can be computed for individual points, single
clusters or a complete clustering (the set of all clusters that
have been determined for a dataset). The silhouette is always
normalized to be in the range [−1, 1]. For an individual
point i it states how well that point belongs to its own cluster
a and at the same time how distinct it is from its nearest
other cluster b. It is defined as:

sil(i) =
d(i, b)− d(i, a)

max(d(i, b), d(i, a))

where d(i, x) denotes the distance (by means of the previ-
ously defined function) between i and the respective cluster
centroid. Resulting values can be interpreted as follows.
Close to 1: Good, the point lies very central in its own cluster.
Close to -1: Bad, the point should actually have been put in
another cluster. Close to 0: The point is hard to cluster as it
lies just between two clusters.

The silhouette of a cluster or a whole clustering is simply
the mean of the silhouette of the respective points. As a very
intuitive measure of the quality of a clustering, the silhouette
tends to increase with a higher number of clusters – more
and more independently of the actual clustering; a clustering
where each object is in its own cluster will always get the
highest score. To accommodate this, we follow the approach
to add a small factor (we use 0.92) that penalizes very small
clusters.

5 VISUAL ENCODING METHODS

As detailed before, our system consists of three major
views: the clustering timeline (Section 5.1), the distances-
heatmap/silhouette-plot (Section 5.2), and the filled contour
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Figure 3. A bipartite graph and its possible embeddings. Nodes are
labeled cc,t where c the cluster ID and t is the time step. (a) Arbitrary.
(b) Minimized crossings. (c) Node positions optimized for smooth time
step transitions.

maps (Section 5.3). All views are linked with interactions
(Section 5.4).

5.1 Clustering Timeline

The centerpiece of our system is the clustering timeline (see
e.g. Figure 4 top) which gives a concise overview over the
similarity structure in the data for an entire ensemble. Our
new design and interaction techniques are inspired by Sankey
diagrams [3], [4] and alluvial diagrams [38] both of which
represent flow quantities in time-dependent settings.

5.1.1 General Semantics
The clustering timeline is basically a visualization of the
directed graph that is defined by the series of clusterings
output by the clustering algorithm. We define nodes and
edges as follows (see Figure 2 for a small example). A node v
represents a cluster v.c at a time step v.t. An edge (u, v)
represents an ensemble member that belongs to cluster u.c
at the time step u.t and to cluster v.c at time step v.t. It must
hold that v.t = u.t+ 1 (edges may only exist between nodes
of subsequent time steps; no ensemble member may “skip”
a time step). There is an edge for each ensemble member for
each pair of time steps (t, t+1). Because, in general, clusters
contain more than one member, and members which have
been clustered together once often stay in the same cluster
for some time, a lot of parallel edges can be expected in this
model.

Notice that we distinguish between local and global
clusters (in a temporal sense). When, for one time step,
there are three clusters, one may – locally – identify them as
clusters 0, 1 and 2. But we also have the notion of clusters
which may exist over several time steps. These stem from the
concurrent clustering of scalar fields of all time steps. So they
exist in different instances at different time steps (ensemble
members may come and go) but share a common cluster
centroid. These time-independent clusters get a unique global
ID, respectively, and also a different color. These colors
come from a predefined set of colors chosen with regard
to aesthetics and distinguishability based on the proposal in
[39]. In case of an extraordinary high number of clusters the
set is dynamically extended as proposed in [40].
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Figure 4. Cluster-based climate ensemble analysis: (top) The clustering timeline gives an overview of temporal occurances of clusters and the
transitions of simulation runs between them. (bottom left) The cluster means encode the represented climatic state of each cluster independent of
time. (bottom right) Clustering heatmaps support the validation of clustering results (here for the time steps highlighted with rectangles).

5.1.2 Layout Computation

Envisioning a good layout for the clustering timeline, we
think the following objectives should be met. Clusterings
should be arranged along a horizontal timeline. So, the x-
coordinate of a node should correspond to the time step it
refers to. The y-coordinate should be the same as the one of
the node with the same global ID from the previous and next
time step, so that a temporal coherence (if existent) is visible
at once. The edges should have a constant width (vertical
extent) so that the width of a bundle of them corresponds to
the number of members exhibiting the same development.
Then the nodes must have a height corresponding to number
of incoming and outgoing edges so that they cover exactly
the “entrance” and “exit” area of the node (we have opted
for rectangles as glyphs for the nodes).

To make the path of an ensemble member through the
graph a continuous line, the vertical position at which it joins
a cluster node must be the same when it leaves it again. So,
to compute an embedding one has to split the cluster nodes
into several nodes for each member, and the original nodes
become a mere constraint to layout the finer nodes next to
each other (vertically). Meanwhile the main concern is to
reduce crossings of the member paths and to keep them as
horizontal as possible (see Figure 3). In general, minimizing
the bipartite crossing number is an NP-complete problem [41].
With the goal to deliver a responsive application we have
implemented an algorithm that optimizes the layout locally
and terminates when the number of changes falls below
a certain threshold or a maximum number of iterations is
reached.

The approach we follow can be seen as a special case
of layered graph drawing, first proposed by Sugiyama et al.
[42] where in our case the layers are the sequence of time
steps. In the following we outline the implementation for
the layout of the clustering timeline. Because the number of
ensemble members per time step is constant, one can picture
the data for the layout algorithm as an nt × nm grid (where
nt is the number of time steps and nm is the number of
ensemble members). The basic task is to figure out a good
rank (one of the nm vertical positions in this grid) for each

ensemble member at each time step. This rank will then
translate relatively easy to a y-coordinate.

The grid is initialized with a naive listing of the mem-
bers per cluster for each time step, respectively, and then
optimized iteratively. The optimization assesses the current
layout with respect to the number of edge crossings. If swap-
ping the position of neighboring nodes reduces the number
of crossings, this new layout is kept. But as mentioned above,
the fact that nodes must not swap positions with nodes
belonging to a different cluster has to be kept in mind.

5.2 Clustering Heatmap
As clustering is a critical part in the analysis process,
appropriate means are required to understand and validate
the automatically derived results. Therefore, we integrate an
augmented heatmap view that includes information about
pairwise scalar field distances and about the clustering.
Figure 5 (bottom) gives an example of such a visualization.

For a single time step, the heatmap shows the pairwise
distances in colored table cells. We chose a blue-white-
red colormap for rapid perception of three major classes
(low, medium, high similarity) and scaled the range to the
minimal/maximal distance within the entire ensemble (over
all time steps) to ensure color stability and comparability.
Sorting the matrix according to the clustering ensures
easy analysis of the intra-cluster variability. Within each
cluster, the data points are sorted according to the silhouette
coefficient with decreasing order.

The heatmap is augmented with silhouette information –
comb-like structures above the heatmap in resemblance to
dendrograms for hierarchical clustering. Each comb connects
all members of a cluster (vertical lines) and its height encodes
the silhouette coefficient for the respective cluster. The higher
the comb, the higher the silhouette and thereby the similarity
to the respective cluster mean.

An additional bar chart underneath the silhouette comb
encodes the silhouette of each cluster member. Large diver-
gence from the baseline of the comb indicates that the data
point does not fit too well into the cluster and is close to
another one.
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5.3 Filled Contour Maps

Working with an abstraction of the input data, such as the
clustering timeline, it is important to be able to have a look
at the original input data; both for validation of the cluster-
ing results and for climatological interpretation. Therefore
we have included a geospatial visualization of the time-
dependent 2D scalar field ensemble using color-mapping
of the scalar values. We have opted for filled contour maps
based on a discrete colormap that the climatologists are
already familiar with. Recently such visualizations based on
binned scalar ranges have been studied with the result that
users can read such maps indeed accurately [43], sometimes
better than continuous colors. We have further enhanced the
visualization with additional isolines and line overlay of the
continental outlines. We offer this scalar field visualization
not only for all ensemble members for all time steps but also
for all the cluster means and the ensemble mean.

5.4 User Interactions

We allow several kinds of user interactions in our tool.
The various visualization modules of our software can be
combined dynamically by the user to gather all the desired
information on demand. At first the focus is on the clustering
timeline. Its size can be adjusted while scroll bars allow to
navigate through the visualization if a large zoom factor is
chosen or the time series is particularly long.

The visualizations of the ensemble field data, the distance
matrices and silhoutte bar charts (introduced above) can be
added on demand and also be adjusted in size and position
in the overall visualization layout. Because these views
correspond to single time steps only, we have implemented
them to keep in sync with a time step controller similar
to those of video players (back/forward buttons, slider);
the currently selected time step is also highlighted in the
clustering timeline.

Within the clustering timeline, one or more ensemble
members can be selected (the state is toggled by left click on
edges or nodes) to highlight their paths through the graph
(Figure 5 (top)). This way it becomes particularly easy to
see when an ensemble member changes from one cluster to
another. By default this is not always easy to spot because
the path of a single member may drown in the set of parallel
edges.

The user can also get a quick view of the scalar fields
included in a cluster by hovering over a node with the mouse.
The shown images are miniatures of the filled contour maps
that can also be looked at in the separate view.

Lastly the user can adapt a horizontal scaling parameter
which scales the visuals (unproportionally) along the x-axis.
Thus the timeline for a long series can be made to fit the
window. The distinct colors of the clusters together with the
optimized layout make the resulting distorted image still
well-readable for the purpose of an overview (see the video
in the supplemental material).

6 RESULTS

Driven by the previously defined analysis tasks (Section 3.1),
we conduct three case studies together with experts. In the
first one (Section 6.2), we analyze the clustering procedure, its
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Figure 5. Top: Clustering timeline (cropped left and right) with ensemble
members p1, p0, p4 and p7 selected. Bottom: Distance heatmap and
silhouette chart for month 2016-7. Notice how the imminent change of
cluster of member p4 is indicated by a silhouette bar that has almost
dropped to 0 (to be read as “in between two clusters”).

parameters, output, and quality (Q.2+3+4). In the second case
study (Section 6.3), we look into data variability and temporal
cluster structures to gain insight about the simulation skill.
A comparative analysis is conducted with respect to ground
truth data and two different initializations (Q.1+3+5). In the
last case study, we analyze and compare three simulation
ensembles that use different numerical models (Q.5).

In the following we first give some details about the
ensemble datasets so that the reader can comprehend the
discussion of the findings.

6.1 Datasets

All datasets are simulations of the air temperature at two
meters height, expressed as anomalies (deviations) of some
predefined state (see Section 6.1.1 for details). The data
is given on a regular grid (in spherical coordinates) that
covers the whole earth. The spatial resolution is 192 × 96
(longitude × latitude). In general the ensembles contain 10
to 15 members. A summary of the datasets is provided in
Table 1.

We will consider two simulations starting in 1997 and
1998 using the baseline initialization. Three simulations start
in 2013 and use different initializations. The first two datasets
are so called hindcasts, i.e. numerical simulations of the past
that enable the climatologists to compare their simulations
with so called reanalysis data. These are consistent time-
dependent gridded data sets of the atmospheric state derived
on the basis of observations, an atmosphere model and a
data assimilation system. Reanalysis data represent a best fit
of the numerical model to observational data. For the studies
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Table 1
Dataset overview: For the analysis we use five ensemble simulations.
The name indicates the prediction system and year of initialization.

# runs gives the number of ensemble members and # time steps the
number of time steps per simulation with the respective real time (time

range). The reanalysis dataset contains real-world temperature
observations [44].

name # runs # time steps time range

baseline1-1996 10 109 [1997, 2006]
baseline1-1997 10 109 [1998, 2007]
baseline1-2013 10 109 [2014, 2023]
prototype-gecco2-2013 15 109 [2014, 2023]
prototype-oras4-2013 15 109 [2014, 2023]

reanalysis 1 229 [1997, 2016]

Figure 6. Cluster means of prototype-oras4-2013 for k = 2: (left) cluster
0 continental warming, (right) global warming.

described here we used data from “The NCEP/NCAR 40-
year reanalysis project” [44], which we refer to as ground
truth or observation data in the following (see also Table 1).

6.1.1 Climate Simulation Settings
The decadal climate predictions that we have worked with
were developed within the MiKlip project [2]. The prediction
system is based on the coupled earth system model MPI-
ESM of the Max Planck Institute for Meteorology (MPI-
M). The initialization uses the ORAS4 and GECCO2 [45]
ocean reanalyses [46] for the ocean and for the atmosphere
ERA40 [47] until 1989 and ERA-Interim [48] thereafter. The
global atmospheric model component ECHAM is used with
a horizontal resolution of T63/L47 (~200 km, 47 levels
vertically) and 1.5 degrees/L40 in the oceanic component
MPIOM. We have used the global 2m temperature anomalies
relative to the period 1961–2010 for each ensemble member
on a monthly basis. The anomalies were low-pass filtered
with a one-year running mean. A central question will be
how the ensemble members differ and where analysts can
see similarities.

6.1.2 El Niño and La Niña
Two specific phenomena that play a role in the sections below
are El Niño and La Niña, which are also known, respectively,
as warm and cool phases of the El Niño/Southern Oscillation
(ENSO) [49]. ENSO is associated with anomalies in the sea
surface temperature (SST) in a region in the equatorial Pacific
(between approximately the International Date Line and
120 °W). In this relatively large region the SST is known to
rise above (El Niño) or drop below (La Niña) the average
temperature at irregular intervals with strong effects on
nature and humanity.

6.2 Cluster Analysis
The first step in our analysis procedure is the k-means
clustering of an ensemble dataset into k clusters of similar

fields; recall that these clusters are computed over the whole
time series, so at a select time step not all k clusters need
exist. We will walk through this analysis session using dataset
prototype-oras4-2013. As detailed before, our system provides
the opportunity to automatically compute the optimal k
parameter based on the silhouette coefficient (result here:
k = 2). The two resulting cluster means are depicted in
Figure 6: cluster 0 represents continental warming, and
cluster 1 global warming both by about 1 ◦C. Comparing the
means to the filled contour maps of the 15 simulation runs,
we see that the means reflect the major trends in the data
well. What they still lack is a more detailed representation
of extremal events such as El Niño and La Niña. Hence, the
domain experts explore multiple other k-values.

To find a suitable parameter for k we provide several
visual aids as depicted in Figure 4. An important cue
are the cluster means as we have seen in the previous
paragraph. Figure 4 shows the cluster means for k = 6,
i.e., six representative climate patterns. The k = 2 clusters
are still present: cluster 4 (orange) and cluster 1 (green).
What we also observe is that we get more variations of
the two initial patterns. The upper row (pink, green, gray)
shows increasing temperature combined with warming in
the Pacific Ocean (El Niño event). The lower row (orange,
blue, purple) reflects increasing global warming with cooler
than average temperatures in the Pacific Ocean (La Niña or
neutral event). Similar findings are made for other settings
of k.

To avoid overfitting during the clustering, additional in-
formation is required. This is provided through the clustering
timeline (Figure 4 for k = 6). It shows for each time step
how many ensemble members belong to a certain cluster
and how their affiliation changes over time. For k = 2
most simulations feature two large strands that vary in
size, often in a quasi cyclic pattern. As k increases, the
strands in the clustering timeline get more decomposed. For
k = 6 (Figure 4) we can still observe major trends (dominant
strands). As k is further increased, this structure starts to
dissolve and many single-member strands occur. For our
data, we found that k ∈ [5, 7] is commonly a good setting
and that the results are stable across the values.

An important design goal was also to allow for high
user confidence and trust in the technique. Hence, we also
provide more detailed visual and numerical feedback about
the clustering using the clustering heatmap. Two sample
heatmaps are given in Figure 4 (bottom, right). The respective
time steps are highlighted in the clustering timeline in the
same figure by black rectangles. Red color in the heatmaps
indicates good agreement and we observe that there are
well-pronounced cluster squares along the diagonal. The
silhouettes bar charts on top indicate which members belong
to which cluster and how well the members fit into their
cluster. Overall, we see that the clustering works well and
groups similar simulation runs together. Furthermore, we
can observe natural variability in the data. Often we observe
smooth transitions between major states rather than clearly
isolated clusters; so certain clusters appear to be relatively
similar. For the left heatmap there is high similarity between
the (small) blue and green and the (bigger) pink cluster,
and for the right heatmap between the (now bigger) blue
and green cluster. Pink represents here a rather neutral state
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Figure 7. Visual analysis of the ensembles baseline1-1996 and baseline1-1997 : The figure is a summary of the relevant charts to analyze and
compare the two datasets. For each dataset, we provide the clustering timelines, the error chart, and the cluster means (see labels on the left). The
central part contains ground truth information including the time labels, indication of El Niño and La Niña years (red and blue bars), and some sample
filled contour maps from the ground truth. Dots on top indicate the respective time step.

with little isolated warming, while blue and green represent
stronger global warming combined with La Niña and El Niño
characteristics, respectively. As the data transitions slowly
between these states, it becomes clear that additional parts in
the clustering heatmap will also feature high similarity. This
can aid in a detailed analysis to understand major trends in
an ensemble analysis.

6.3 Variability Analysis for a Single Ensemble
In the second case study, we walk through two analysis
sessions for a single ensemble. We start with dataset baseline1-
1996 and continue with baseline1-1997. As both datasets
overlap in time, we finish with a discussion of the two
analyses.

6.3.1 baseline1-1996
Based on previous experience, the domain experts settle in
the clustering for k = 5. The respective cluster means are
depicted in Figure 7 (top): (cluster 0) represents warming in
the north pole area, (cluster 1) represents warming over the
land masses, (clusters 2, 3, 4) represent different degrees of
warming combined with El Niño events. The color code for
each cluster is given by the bar above/below each image.

The same colors are used in the clustering timeline
(Figure 7 (top part, bottom chart)) to ease identification
of clusters over time. The depicted data covers nine years
ranging from 1997 to 2005. The clustering timeline features a

good agreement of the ensembles in the early phase (until
1998), where all members belong to cluster 4 (El Niño pattern,
little warming). This is in good agreement with the ground
truth data (Figure 7 (center part)) where we see a strong El
Niño event. The color code on top of the ground truth maps
indicates El Niño and La Niña years. The x-coordinates are
aligned for all temporal charts to allow easy comparison. The
timescale is provided in the center of the figure. Looking at
the remainder of the clustering timeline, we see that there is
commonly no clear trend for one of the clusters. Most of the
time many different clusters are present and often feature
equal shares in members.

In the years 1998 through 2001, we went through a La
Niña period (see ground truth images for a sample). This
phenomenon is hardly present in the simulation data and
hence no corresponding cluster is identified by k-means.
For this time period, most runs belong to either the pink or
the blue cluster. We also observe that all other clusters are
present with a few members; this indicates a large variability
in the ensemble and little agreement.

In the remaining time steps (starting in 2001), the blue
cluster (little warming) is dominant, which agrees with
observations, followed by the green cluster which represents
global warming. Throughout this phase, we also observe
a constant presence of clusters indicating an El Niño event
(pink, gray). Overall, we can state that variability is very high
in this ensemble, and in most time periods many clusters
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Figure 8. Comparative analysis of multiple simulation models: (top) ground truth filled contour maps for the time range in the past. Dots on the
timeline indicate the respective time point. Color encodes observed El Niño (red) and La Niña (blue) events. (center) Clustering timelines for the three
models with k = {5, 5, 6} for the three models. (bottom) Cluster center of the three ensembles sorted with respect to matching patterns.

with highly varying predictions are present.
We want to analyze this in more detail and look at

the prediction skill of the different clusters. Therefore, the
analyst is provided with an error chart representing the mean
deviation from the ground truth for each cluster (colored
lines) and for the ensemble mean (black area). The error chart
confirms the initial observations: We start with an average
error of 0.45 ◦C which increases to 0.6 ◦C in the La Niña
phase. Best performance during this time is featured by the
blue cluster (no equatorial warming). In the second half of
the simulation we can observe that the error for the entire
ensemble is fairly low (< 0.5 ◦C) and commonly smaller than
the error for the single clusters.

6.3.2 baseline1-1997

A different picture is given by the clustering timeline
of dataset baseline1-1997 (Figure 7 (bottom part)). We see
clear phases of dominance of single clusters, starting with
blue, then orange, and finishing with green and pink. The
corresponding cluster means are provided below. Blue stands
for a La Niña phase with remainders of warming in the
equatorial area. Orange features a La Niña pattern with no
additional warming. The green cluster represents warming
over the land masses, and pink indicates a strong El Niño
combined with general warming.

In general, these phases agree well with observed data. In
2001–2002, there is a tie between orange (La Niña) and green
(land mass warming), and the ground truth lies actually
between those two types of predictions. In 2004–2005, we

observe a strong presence of green (warming over land
masses) and pink (warming + El Niño), and this was in
fact a period when El Niños were observed every other year.

The error chart reveals a generally low error. As ensemble
members are often concentrated in one of the clusters, we
see that the ensemble error coincides with the error of this
cluster. Most of the time, the ensemble error is not higher
than any cluster error except for winter 2003/04.

6.3.3 Summary

In the two analysis sessions, we saw two different types of
outcomes. Both simulations use the same prediction system
with different initializations. In the second case (baseline1-
1997), the predictions worked really well and little variability
is seen in the clustering timeline. In the first case (baseline1-
1996), we see a much more structured clustering timeline
with strong fluctuations in clusters and poorer prediction
performance in the first half.

6.4 Comparative Analysis of Multiple Models

In Section 6.3, we analyzed and compared ensembles of
same model but for two different time ranges. Now we
compare the datasets baseline1-2013, prototype-gecco2-2013,
and prototype-oras4-2013 (short: baseline1, gecco2, oras4) which
cover the same time range (2014–2023) but were created
using different models. Baseline1 contains 10 simulation runs,
gecco2 and oras4 15 each. The respective analysis graphic is
given in Figure 8.
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Using k = 5 resulted in good clustering results for the
baseline1 dataset. The cluster means are highly descriptive
and feature good similarity results in the distances heatmap.
Using the same parameters for the datasets gecco2 and oras4
achieves satisfactory results; but interesting subordinate
features (e.g. missing temperature increase in the Pacific
Ocean) are often located between clusters and occurred half
the time in one cluster and half in the other. Hence, k is
increased to 6, which results in coherent climate patterns
(cluster means). Figure 8 (bottom) shows the cluster means
for the three models sorted in such a way that, where
possible, matching patterns are in the same column for all
three simulations. The gray cluster represents little warming.
Orange, pink, and red represent a 1 ◦C warming in large
parts of the earth combined with El Niño events of varying
intensity. The purple cluster represents an El Niño event
while general warming is absent. Green, light blue, and dark
blue represent a general warming trend which is not present
in parts of the Pacific Ocean.

As we have observed in the previous session, we usually
obtain high agreement in the initial phase (first year), which
is also present in baseline1 and oras4. Gecco2 contains two clus-
ters in this phase: gray and purple. Baseline1 features the gray
cluster, oras4 the green one. Looking at the respective cluster
means, we see that gray and green are very similar. Green
features a more extended warming than gray and warmer
temperatures at the north pole. The baseline1 simulation is
more extreme and its gray cluster is located between the gray
and green one for the other two simulations. gecco2 contains
several simulation runs that predict an El Niño. Looking
at the ground truth data, we see that 2015/16 featured a
very strong El Niño event which becomes visible as strong
warming in the eastern tropical Pacific Ocean. This feature
is most prominent in the third image (date: April 2015) and
is well covered by gecco2 and oras4, which feature strong
purple, orange and pink clusters standing for the respective
climatic pattern.

Ground truth data ends at this time phase and the
remainder of the simulations predict the future. Here we
see different outcomes. Baseline1 features strong blue and
green clusters (general warming + cool Pacific) starting from
2018 with several temporally limited increases of the orange
cluster (warming + moderate El Niño). The gray cluster is
no longer present. gecco2 and oras4 feature a wide spread of
possible futures. In the beginning gecco2 contains the warmer
clusters and oras4 the more moderate ones.

7 DISCUSSION

We have found that our combination of visualizations works
well for the specified tasks. The clustering timeline effectively
conveys the temporal development of the ensemble data
(begin, continuation, end, division or merge of clusters of
similar ensemble members). Other clustering techniques
or distance measures to plug into the system remain to
be studied in detail. Even with the already convincing
qualitative results, there may be computationally more
efficient algorithms than the multi-run k-means and the
l1 metric that considers each pair of scalars of two fields to
be compared.

In this paper, we particularly focus on climate simulation
ensembles, but in its core, the system can deal with any time-
dependent (high-dimensional) point cloud as long as the
number of points remains constant over all time steps and a
meaningful distance between two points can be defined.

7.1 User Feedback
Our project had a clear focus on a good general usability and
a maximal utility for our collaboration partners, which has
been manifested in regular meetings where we got feedback
concerning the current state of the software and discussed
the next necessary steps. Hence, we concentrated on user
experience (UE) as evaluation scenario [50], [51]. The following
exemplifies a few of the features of the final implementation
that were explicitly asked for based on a prototype of the
software.

From early on climatologists stated that they need the
permanent possibility to complement the clustering timeline
with filled contour maps. They desired means to compare the
normalization of a scalar field’s error compared to the ground
truth so that it reflects an actual temperature difference.
Another point of discussion concerned the most helpful
coloring of the clustering timeline. First shown a coloring
for the cluster nodes which reflected the clusters’ silhouette
coefficient, the users pointed out that a coloring scheme to
distinguish the global clusters easily in an overview view
(many time steps visible at once) would be a better aid in
the analysis of the long-term behavior of an ensemble. In its
early stages, the focus of the application had been a time step
by time step analysis approach using a close-up view of the
clustering timeline where the text labels were sufficient.

Since we were concerned about the climatologists’ wishes
during the development, we can ultimately report generally
positive user feedback. They were eager to see the clustering
results and were very happy with the way they are commu-
nicated by the clustering timeline. The filled contour maps,
which were deemed indispensable, worked really well for
them in the interactive setting. The distance matrices and
silhouette plots proved to be the ideal tool to increase the
confidence in the clustering results, and to gain a deeper
knowledge about how they come to be.

When a software becomes more and more production-
ready with a growing set of features, the system configuration
and interface can develop into something that is no longer
easy and intuitive. Eventually the following graphical user
interface was implemented for the application, to everyone’s
satisfaction. There is a control bar that offers two main
entrance points for users: A Files menu to load and save data,
and a Tools menu to work with the data (compute a clustering,
create certain visualization, etc.). The actions of these tools
can be undone or redone with different parameters. These
named parameters can be viewed and adjusted in a dedicated
area directly below the control bar. The overall design allows
for a relatively smooth workflow (as proposed in this paper)
without too much clicking and navigating through menus
while we maintained the possibility to extend the software,
e.g. with new tools, without major changes.

7.2 Lessons Learned
The presented interface has been developed over the course
of 1.5 years with regular feedback rounds. In the following
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we state lessons-learned from this interaction.
Incorporate established visualization techniques. Ex-

pert users, especially in the natural sciences, usually have a
strong background in mathematics and data analytics. Most
of them have used visualization in their data analyses and
communication process throughout their career. Commonly,
they employ static ”standard” visualizations and animations
such as scalar field visualizations, scatter plots, and line
charts which were derived from the raw data through
a mathematical procedure. Including (a subset of) these
techniques is important to give expert users a convenient
start and build trust in the proposed technique.

In our case, we integrated filled contour maps of time-
dependent 2D scalar field ensembles in an interactive small
multiples approach. This allows the user to check the raw
data and understand the new system. We also integrated
summary statistics like the error chart (see e.g. Figure 7)
to provide an already familiar type of visualization that
links our newly proposed clustering timeline to well known
statistical summaries.

Allow for export of intermediate results and respective
import. We have implemented saving of the filled contour
maps, the heatmap and silhouette plot, the abstract clustering
results and the clustering timeline. This has given us the
following benefits:
• Users can stop halfway through an analysis session and

resume it later without having to reproduce the input
(data and parameters).

• Less waiting for potentially lengthy computations like
the clustering because it can be faster to load results
from a file than recompute them each time.

• These intermediate results can easily be shared and for
example viewed with other software.

• Data from alternative sources can easily be used instead
of the “in-house” results (e.g. other scalar field visual-
ization, other clustering results). (In this sense our web
application is really a plug and play toolbox.)

Use visual links in dashboards. In the early stages of
our implementation we ensured the detection of matching
elements in the dashboard through click interaction. For
example, if the user wanted to see the cluster mean for a
certain cluster they had to click in the cluster in the clustering
timeline and vice versa. The respective complementary
element in the other visualization would then have been
highlighted. This proved to be rather tedious and we opted
for permanent visual links of the elements. In Figure 7, for
example, we use the same color in the clustering timeline,
the boundary of its respective means in the contour plots,
and the lines in the error chart. This proved to be much more
convenient than the interactive version.

Use automatic dynamic scaling for different chart types.
In the current tool the user can interactively fill the dashboard
with the charts they are interested in. In the early implemen-
tation we used fixed standard sizes for each chart type that
allowed for good visual inspection. Working with varying
datasets we realized that this can often lead to extremely
large dashboards that require a lot of scrolling when using
for example large number of ensembles or very long time-
series. In the current versions, we opt for a convenient fit of
the charts in the given screen space and allow the user to
adjust sizes as necessary.

8 CONCLUSION AND FUTURE WORK

In this paper we develop and link a set of visualizations
that supports the in-depth analysis of climate simulation
ensembles. This development is the result of a close collab-
oration with domain experts. We have gathered questions
that the ensemble datasets pose, and have derived designs
for visualizations which address these questions and help
solving them. We compute a series of clusterings for the
time-dependent 2D scalar fields and visualize it in our
so-called clustering timeline, a specialized version of the
Sankey diagram. The time-step-wise clustering result itself
can be validated with further graphics that we provide in
the software. This includes a heatmap showing the pairwise
distance of the ensemble members, a bar chart showing the
silhouette coefficient for the clusters and filled contour maps
of the scalar fields.

We have implemented the software as a web application
that the climatologists could easily try out at various stages
of its development. In a regular feedback loop we fine-tuned
our goals and the respective implementation, so that in
the end, the domain experts were very content with the
software. They are able to execute analysis sessions, finding
the software flexible enough to always adapt to their current
need of information. With the help of our clustering approach
they can get insights into the data which were not attainable
before.

Having a well-working and approved visualization for
the clustering series, one research direction we aim at for
future work is a further specialization of the clustering ap-
proach. For example, we want to explore more sophisticated
distance functions, maybe based on a prior feature extraction.

We also see room for improvement concerning the
scalability of the clustering timeline; not so much for larger
ensembles – up to 100 members should not be a problem.
After that maybe just thinner lines might be a solution, even
though a completely different drawing of the “flow” might
become desirable then. More challenging will be the question
of how a larger number of time steps could be handled,
as may arise because of higher temporal resolutions or
predictions for the further future. Then our visualization,
showing every single time step, is probably not the best
solution to convey the “big picture”. A hierarchy of timelines
with ever increasing temporal summarization (as in [19])
may be a remedy.

Another research direction could be the question if
and how it may be possible to tweak the visualization
of the “raw data”, like our filled contour maps, so that a
manual comparison becomes less tedious and the computed
clustering can be comprehended or validated more easily.
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T. Kruschke, J. G. Pinto, H. Pohlmann, M. Reyers,
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Cubasch, “Decadal climate predictions improved by
ocean ensemble dispersion filtering,” Journal of advances
in modeling earth systems, 2017, ISSN: 1942-2466.

[6] fona-miklip. (2016). Decadal forecast for 2017–2026,
[Online]. Available: www.fona- miklip.de/decadal-
forecast-2017-2026/decadal- forecast- for-2017-2026
(visited on 07/12/2017).

[7] DWD, MPI-M, and UHH. (2017). Seasonal forecasts,
[Online]. Available: www.dwd.de/EN/ourservices/
seasonals forecasts / time series . html (visited on
07/12/2017).

[8] M. Böttinger, H. Pohlmann, N. Röber, K. Meier-
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[45] A. Köhl, “Evaluation of the gecco2 ocean synthesis:
Transports of volume, heat and freshwater in the
atlantic,” Quarterly journal of the royal meteorological
society, vol. 141, no. 686, pp. 166–181, 2015.

[46] M. A. Balmaseda, K. Mogensen, and A. T. Weaver,
“Evaluation of the ecmwf ocean reanalysis system
oras4,” Quarterly journal of the royal meteorological society,
vol. 139, no. 674, pp. 1132–1161, 2013.
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